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ABSTRACT 
 

A numerical model for out-of-plane flexure was developed for concrete block masonry 
walls reinforced with externally bonded glass fibre reinforced polymer (GFRP) sheets.  
The model predicts the loading envelope response by defining three points of bending 
moment and lateral deflection, which are then connected using a simple nonlinear 
stiffness degradation model found in the literature.  The strength model is based on strain 
compatibility and the predicted ultimate deflection is determined using a maximum 
GFRP strain value to obtain the ultimate curvature. A comparison between the actual 
and predicted bending moment versus lateral deflection responses from nine full-scale 
tests was performed with good agreement.   
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INTRODUCTION 
 

In the first part of this work (Kuzik et al. 1999), the authors have tested a series of 
full-scale masonry block walls reinforced with glass fiber reinforced polymer 
(GFRP) sheet reinforcement. These tests were carried out cyclically under 
out-of-plane flexure combined with moderate in-plane axial compression. In that 
work, the test setup, test specimens and results were all reported and the 
characteristics of the behavior were discussed. Nine tests were performed in which 
three parameters were studied. These included the level of compressive axial load, 
amount of internal steel reinforcement, and amount of externally bonded GFRP 
sheet reinforcement. 

Of the three parameters studied, varying the amount of GFRP sheet reinforcement 
was the only parameter that significantly affected the behavior of the walls. The 
GFRP sheet reinforcement governed the response of the bending moment versus 
centerline deflection. Increasing or decreasing the amount of GFRP sheet 
reinforcement either increased or decreased both the wall stiffness and ultimate 
strength respectively. Except for visible cracks, the walls maintained their structural 
integrity throughout the out-of-plane cyclic loading. The response in either side of a 
fully reversible cycle was identical, indicating no compression degradation of the 
bond between the GFRP sheets and the face shell. The unloading/reloading paths for 
successive loading cycles were nearly linear and progressively softer in successive 
loading excursion. There was, however, no strength degradation in the successive 
excursions up to the failure point. Thus, the general behavior of the walls was robust 
and predictable. The system, therefore, could be used to advantageously rehabilitate 
older masonry structures that are inadequately reinforced to withstand seismic 
events. 

To generalize the test results obtained by the authors, a model capable to predict the 
envelope of the behaviour is needed. There are many models available to predict the 
load versus deflection response for reinforced concrete elements but most are too 
complicated to implement (Saiidi, 1982). A very simple and, therefore, practical 
model developed by Saiidi and Sozen (1979) includes all of the characteristics of the 
hysteresis loops obtained. The model is referred to as the Q-HYST and is governed 
by only four rules. Key features of this model include: the loading response is 
bilinear with an ascending post-yield branch, the unloading stiffness beyond 
yielding is a function of the maximum experienced deformation, and stiffness 
degradation is accounted for during load reversal. 

The observed behavior as mentioned above consisted of a loading envelope and 
progressively degrading unloading/reloading paths as shown in Fig. 1. The loading 
envelope consisted of an initial uncracked linear zone ending at a transition point.  
Beyond this point, diagonal cracks start to appear on the tension side in the face 
shell adjacent to the GFRP. These cracks are caused by shear lag strains in the face 
shell. These cracks may be modeled in the form of progressive debonding of the 
GFRP sheets causing progressive stiffness degradation. In this zone of behavior that 
is past the transition point the loading envelope has a positive slope and could be 
characterized as either bilinear or trilinear (Fig. 1), depending on whether the wall 



 

contains ordinary steel reinforcement that could yield before the wall reaches its 
ultimate strength. 

Because the nature of the behaviour was found governed largely by the amount of 
GFRP sheet reinforcement on the tension side, the hysteretic response showed a 
pinched picture. Degradation of the behaviour was thus attributed only to 
progressive debonding of the sheets coupled with face shell diagonal cracks that are 
attributed to shear lag behaviour. This allowed a simple unloading path that is 
dependent only on the amount of degradation, which is in turn linked to the total 
curvature or strain achieved at the top of loading excursion. 

The proposed model, shown in Fig. 2 has two parts: a loading envelope and an 
unloading/reloading path. The loading envelope has an initial linear portion ending 
at a transition moment. This is followed by a nonlinear portion ending at the 
ultimate moment. The unloading/reloading path is a linear secant path that accounts 
for progressive degradation of the stiffness. This paper presents the detailed 
derivation of the model as well as verification of the model against the test results 
obtained by the authors (Kuzik et al. 1999). 

To successfully quantify and thus predict the out-of-plane behavior of any wall 
system, an understanding of the mechanics of each material and the interaction 
between materials is required. In assessing the qualitative behavior, the GFRP sheet 
reinforcement and steel reinforcement strains were used extensively. These data 
were again used along with a fundamental strength of materials approach to 
mathematically quantify the strength behavior. In addition, a flexural stiffness model 
was used to predict the stiffness degradation, thus deflections, throughout the 
loading history. 

To define the loading path, joint cracking moments as well as the contribution of 
externally bonded sheets to the cracked stiffness are needed to define the transition 
moment, MT, and the deflection at which it takes place. The ultimate moment, Mu, is 
next determined together the deflection at which it takes place. The two points are 
joined with a nonlinear path that is dependent on an effective stiffness evaluation at 
any point during that phase of behaviour. The current strength and secant stiffness at 
any point are state parameters that allow unloading/reloading of the system. 

NUMERICAL MODEL FOR FLEXURE 

To generalize the test results obtained by the authors, a model capable to predict the 
envelope of the behaviour is needed. There are many models available to predict the 
load versus deflection response for reinforced concrete elements but most are too 
complicated to implement. A very simple and, therefore, practical model developed 
by Saiidi and Sozen (1979) includes all of the characteristics of the hysteresis loops 
obtained. The model is referred to as the Q-HYST and is governed by only four 
rules. Key features of this model include: the loading response is bilinear with an 
ascending post-yield branch, the unloading stiffness beyond yielding is a function of 
the maximum experienced deformation, and stiffness degradation is accounted for 
during load reversal. 

The proposed model, shown in Fig. 2 has two parts: a loading envelope and an 
unloading/reloading path. The loading envelope has an initial linear portion ending 
at a transition moment. This is followed by a nonlinear portion ending at the 
ultimate moment. The unloading/reloading path is a linear secant path that accounts 
for progressive degradation of the stiffness. 



 

To define the loading path, joint cracking moments as well as the contribution of 
externally bonded sheets to the cracked stiffness are needed to define the transition 
moment, MT, and the deflection at which it takes place. 

The maximum moment point on the response could be taken as the ultimate 
moment. However, since the only failure mode observed was a shear failure mode, 
changing conditions may result in a different failure mode such as rupture of the 
GFRP, or crushing of the masonry. The ultimate moment obtained form the tests 
will be treated as a point on the response curve. The ultimate moment of the section 
may in general be determined in a more general manner as either that obtained 
above or limited by some strain value in the GFRP, or the masonry. For purposes of 
this model, the maximum moment, Mu and the corresponding deflection ∆u, will be 
determined from regression analysis. The two points are joined with a nonlinear path 
that is dependent on an effective stiffness evaluation at any point during that phase 
of behaviour. The current strength and secant stiffness at any point are state 
parameters that allow unloading/reloading of the system. 

Joint Cracking Moment 

Theoretically, the cracking moment is determined from the tensile strength of 
masonry, ft, and the section modulus, S in a straightforward manner. In concrete 
block masonry walls cracking at the bed joint location occurs through the depth of 
the tension face shell under very small moments. Thus, a good approximation of the 
moment of inertia up to the cracking moment is calculated using the net area with 
only one face shell. For reference, all moments of inertia discussed in this document 
are calculated about the geometric centroid of the cross section. Abboud et al. 
(1995) designated this modified moment of inertia as Ig

f. The cracking moment can 
be described to account for axial forces as: 
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in which P is the axial compressive force and Ae is the effective area of the 
uncracked cross section.  The term h is the total depth of the cross section. 

Transition Moment 

As mentioned in the previous section, the transition moment depends solely on the 
amount of GFRP sheet reinforcement bonded to the wall. To assess MT, the GFRP 
sheet reinforcement ratios were plotted against the ratios of MT/Mcr determined from 
the test data obtained by Kuzik et al. (1999) and a linear regression was performed. 
Figure 3 shows the regression line plotted through the data and the resulting linear 
equation relating the two ratios. The linear approximation is an excellent fit through 
the data as the coefficient of determination, R2, is very close to 1.0. The relationship 
determined from the regression analysis can be mathematically incorporated into the 
cracking moment equation quite easily. However, a physical interpretation must be 
associated with this factor for it to be justified. 

The two components making up the theoretical cracking moment relationship are the 
masonry tensile strength and the section modulus. Some boundary layer regions of 
masonry directly adjacent to the bonded GFRP sheet reinforcement may have a 
slight increase in tensile strength due to the absorption of epoxy. However, this 
boundary layer is highly variable and small relative to the effective area that it can 
be neglected. The only remaining term is the section modulus, which is what the 
regression equation targets. With the addition of the GFRP sheet reinforcement, the 



 

initial cracking point is not delayed. But, once a crack starts, the rate at which the 
crack propagates through the cross section is influenced greatly by the amount of 
GFRP sheet reinforcement on the tension face (Kuzik et al. 1999). The amount of 
GFRP sheet reinforcement can be expressed as a reinforcement ratio (ρGFRP) in terms 
of the transformed section area as 

me

GFRPGFRP
GFRP EA

EA
=ρ  (2) 

The terms AGFRP and EGFRP are respectively the area and modulus of elasticity of the 
GFRP sheet reinforcement on one side of the wall and Em is the prism modulus of 
elasticity of masonry. 

The regression term from Fig. 3 is multiplied by Eq. (1), to yield an expression for 
MT as: 

( )







+





⋅





+= GFRP

f

g

e

tT h

I

A

P
fM ρ3.941

2
 (3) 

Maximum Moment  

In the tests carried out, the failure has followed a masonry shear flexure mode. It is 
not possible to determine the limiting values of stain without sophisticated finite 
element analysis.  No such successful analysis of masonry is reported in the 
literature.  Alternately, one may use limiting shear stresses reported by the various 
design practices. However, this varies widely and may not be applicable in the 
presence of GFRP without further investigation. 

Since each specimen failed at a different level of moment, observed to be strongly 
related to the amount of GFRP sheet reinforcement bonded to the masonry wall 
specimens, a linear regression analysis was performed between the measured strain 
in the GFRP sheet reinforcement at the point of wall failure and the corresponding 
area of GFRP sheet reinforcement used. Figure 4 shows the linear relationship from 
the regression analysis. The coefficient of determination, R2, was 0.9969, which 
indicates a strong correlation between these variables. From this analysis, a 
relationship between the GFRP sheet reinforcement area and the maximum strain at 
the ultimate moment, εu GFRP, is proposed in Eq. (4) by 

( ) 6105.613200 −×−= GFRPGFRPu
Aε  (4) 

The procedure used to calculate the ultimate moment is the same used in the flexural 
design of reinforced concrete members plus the contribution of the GFRP: 
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The nominal thickness of the GFRP sheet reinforcement is neglected. The term 
representing the depth of the equivalent rectangular stress block for a cross section is 
modified based on Eq. 5 and the work of Kaar et al. (1978) for the typically low 
masonry prism strength as: 
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Lateral Deflection 

Accurately predicting the out-of-plane deflections in masonry is difficult due largely 
to the continually changing flexural stiffness, EI. The deflection analysis developed 
for the GFRP sheet reinforcement reinforced walls tested (Kuzik et al. 1999) is 
based upon the flexural stiffness degradation model proposed by Abboud et al. 
(1995). 

The model predicts an effective stiffness for a given level of moment above the 
cracking moment. This effective stiffness can then be used in an appropriate beam 
deflection equation to determine the desired lateral displacements. The effective 
stiffness is interpolated between the gross and cracked stiffnesses as: 

(EI)eff = EmIg
fR + α Em Icr(1-R) (7) 

The term α describes the maximum degradation of the stiffness at the ultimate 
moment. The Interpolation factor R is a function of the applied bending moment, 
Ma, relative to the cracking and nominal capacities, Mcr and Mn respectively: 







−
−

+





−
−=

M crM u

M aM u
MM

MMR
cru

au

4

6.04.0  (8) 

To incorporate the model proposed by Abboud et al. (1995), some modifications 
were made. First, it should be noted that the model is only applied at levels of 
moment beyond the transition moment. From point A to point C on Fig. 2, a linear 
path is used with the slope determined using EmIg

f for the stiffness. From point C to 
point F, the model is applied to predict the loading stiffness of the envelope. 

Abboud et al. (1995) stated the general form of the term α as: 
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To assess the coefficient α, the maximum deflection (∆max) is required. This 
information is easy to obtain from test specimens in a research program. However, a 
rational method is required to compute ∆max for any wall to make the model a useful 
design tool. 

The authors propose to use the ultimate strains predicted by Eq. 4 to assess the 
ultimate curvature, and from that, the ultimate deflection can then be evaluated. For 
systems that behave plastically, quantifying an ultimate deflection requires an 
iterative procedure or one of trial and error. Once the system yields, determining 
how much plastic strain the system will tolerate is difficult to assess. This renders 
calculating the ultimate deflection from a curvature approach highly variable. 
However, this is not the situation for walls with externally bonded GFRP sheet 
reinforcement. The GFRP sheet reinforcement behaves in a linear elastic manner 
until it ruptures. The expression for the maximum curvature can be expressed as: 
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For the walls tested under a two point load system located at x distance from the 
beam ends, the applicable beam deflection equation is: 
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Although some horizontal cracking was observed in individual masonry units during 
testing, these crack widths were much smaller than those observed at the bed joint 
locations. Thus, all the horizontal cracks from center-to-center of each course can be 
assumed to be concentrated in one large crack at the bed joint location. A deflection 
correction factor is, therefore, proposed to account for the joint crack spacing: 
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in which L is the wall height; x is the shear span length; and Scr is the crack spacing, 
assumed at 200 mm (normal bed joint spacing for most masonry structures). 

PREDICTED HYSTERESIS ENVELOPE 

The procedure outlined was used to predict the loading region of the moment versus 
deflection envelopes for each of the wall specimens tested by the authors (Kuzik et 
al. 1999). Table 1 lists the properties used in the wall deflection calculations and 
Table 2 lists the test-to-predicted ratios for both the strength model and the 
deflection model. Figure 5 show the predicted and actual bending moment versus 
centerline deflection envelopes for wall 1 as an example. 

As shown in Table 2, the test-to-predicted ratios for the walls with externally bonded 
GFRP sheet reinforcement ranges from 1.01 to 1.14 for the ultimate bending 
moment calculations. This agreement between the test specimens and the 
mathematical model validates the rational mechanics approach used.  Because the 
test-to-predicted results for the GFRP sheet reinforcement walls are greater than one, 
the rational approach proposed in this paper is slightly conservative with no material 
safety factors applied. However, decreasing the area of GFRP may result in different 
failure modes 

The test-to-predicted ratios for the GFRP sheet reinforcement wall deflections range 
from 0.93 to 1.33. However, it must be born in mind that the ultimate strain 
expression was obtained from a regression analysis of the same test set. The 
proposed approach set forth for determining the ultimate deflections achieves the 
±20 percent for five of the eight walls tested with GFRP sheet reinforcement. Walls 
6 and 7 have a test-to-predicted ratio of 1.21 and 1.22 respectively. Thus, seven of 
the eight walls tested with external GFRP sheet reinforcement are within ±22 
percent of the actual deflections. The curvature analysis approach, which assumes 
the mechanics from a continuum body, is thus justified with confidence for walls 
with externally bonded GFRP sheet reinforcement. 

In predicting the bending moment versus deflection hysteresis, small differences in 
the ultimate bending moment have a greater influence on the shape of the envelope 
than do small differences in the ultimate deflection. At the ultimate limit state, the 
bending moment versus deflection envelope has a relatively flat slope as compared 
to the initial region of loading. Where a maximum allowable error of 10 percent in 



 

predicting the moment may be desired, an error of 20 percent in predicting the 
deflections may be tolerable. Because the unloading path is linear from the 
maximum experienced moment/deflection coordinate to the origin, the slope is not 
adversely effected if both errors approach the maximum allowable. 

The poorest test-to-predicted results were obtained for Wall 5a, the standard 
masonry wall reinforced only with steel reinforcement. This wall was tested to its 
ultimate load but not its ultimate deflection, as it was desired to retrofit a partially 
damaged wall with GFRP sheet reinforcement. Thus, the test-to-predicted ratio for 
the strength parameter is valid but the ultimate deflection comparison is not. With a 
test-to-predicted ratio of 1.38 for the ultimate moment capacity, the mechanics 
approach adopted from reinforced concrete design was found to be highly 
conservative for masonry design in this case. The predicted deflection for Wall 5a 
presented in Table 2 was calculated by the same procedure used for the walls with 
GFRP sheet reinforcement. Instead of using the GFRP sheet reinforcement strains 
and geometry, the steel strain was taken as 0.002 mm/mm and the appropriate 
distance to the neutral axis was used to compute the ultimate curvature. This is not 
an accurate technique as the ultimate strain could exceed 0.005 mm/mm, which 
would produce a large error in the predicted curvature. 

CONCLUSIONS 

A rational model was developed to predict the bending moment versus centerline 
deflection response of concrete block masonry walls reinforced externally with 
GFRP sheets. The model includes the parameters of axial load, masonry properties, 
steel reinforcement properties, and GFRP sheet properties. It is recommended that 
additional work be carried out on sheets with smaller width and blocks with smaller 
depth to bring out other failure modes such as rupture of the GFRP sheets and 
compression failure of the blocks. 
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LIST OF NOTATIONS 
A area (mm2) 
a depth of the equivalent rectangular stress block, (mm) 
b width of the compression zone, (mm) 
d distance from extreme compression fibre to centroid of tension steel, 

(mm) 
E modulus of elasticity, (MPa) 
f material strength (MPa) 
ft tensile masonry strength, (MPa) 
h depth of the wall, (mm) 
I moment of inertia, (mm4) 
L wall height, (mm) 
M bending moment, (Nmm) 
P compressive axial load, (N) 
R stiffness interpolation factor 
S section modulus, (mm3) 
Scr spacing of horizontal cracks, (mm) 
tGFRP nominal GFRP thickness, (mm) 
V shear force, (N) 
x length of shear span, (mm) 
∆ wall centerline deflection (mm) 
ε uGFRP ultimate strain in the GFRP sheets 
ρGFRP GFRP reinforcement ratio 

Subscripts 
( )a actual quantity 
( )c concrete quantity 
( )cr cracking value 
( )e effective quantity 
( )m masonry quantity 
( )s steel quantity 
( )T transition quantity 

 
 



 

Table 1  Flexural Stiffness of Wall Specimens 

 Cracked Gross Modified 
Gross    

 Icr EmIcr Ig EmIg Ig
f EmIg

f εGFRP a Mr 

Wall (108 
mm4) 

(1012 
Nmm2) 

(108 
mm4) 

(1012 
Nmm2) 

(108 
mm4) 

(1012 
Nmm2) (mm/mm) (mm) (kN-

m) 
1 2.11 1.79 5.51 4.69 3.15 2.68 0.00818 22.9 33.6 

2 1.46 1.24 4.90 4.17 2.54 2.16 0.00695 13.7 22.9 

3 1.78 1.51 5.51 4.69 3.15 2.68 0.01101 19.4 26.3 

4 1.42 1.21 5.51 4.69 3.15 2.68 0.01219 15.0 17.7 

5a 1.00 0.85 5.51 4.69 3.15 2.68 N/A 10.4 7.8 

5b 2.09 1.78 5.51 4.69 n/a n/a 0.00790 22.7 33.5 

6 2.16 1.84 5.51 4.69 3.15 2.68 0.00940 23.7 38.4 

7 2.43 2.07 5.51 4.69 3.15 2.68 0.01079 28.6 42.6 

8 2.58 2.19 5.51 4.69 3.15 2.68 0.01098 33.0 48.3 
 

Note:  Em = 850f'm = 8500 MPa 

Table 2  Test-to-Predicted Ratios for Bending Moment and Deflection 

 Moment Deflection 

 Test Predicted Test/Predicted Test (East) Test (West) 
Test 

(Maximum) 
Predicted Test/Predicted 

Wall (kN-m) (kN-m)  (mm) (mm) (mm) (mm)  

1 37.57 33.6 1.12 93.9 98.9 98.9 93.2 1.06 
2 25.5 22.9 1.11 70.5 82.3 82.3 88.4 0.93 
3 26.5 26.3 1.01 101.3 122.2 122.2 111.5 1.10 
4 19.7 17.6 1.12 86.6 137.0 137.0 120.4 1.14 
5a 10.8 7.8 1.38 56.5 58.9     58.9  41.0 1.44 
5b 34.6 32.7 1.06 88.3 88.6 88.6 93.1 0.95 
6 40.9 37.4 1.09 113.5 113.3 113.5 93.7 1.21 
7 46.9 41.2 1.14 92.4 118.0 118.0 96.5 1.22 
8 54.3 48.2 1.13 76.5 132.0 132.0 99.2 1.33 
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Fig. 1 Wall 1: (a) Bending Moment vs Deflection 
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Fig. 2.  Proposed Model for Bending Moment versus Deflection Response 
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Fig. 3.  Regression Analysis for Transition Moment 
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Fig. 4 Regression analysis for GFRP strain at failure 
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Fig. 5 Wall 1 Moment vs Deflection: Predicted and Actual 


