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ABSTRACT

Nowadays, powerful methods are available  for the calculation of structural safety values. These
permit to calculate the global failure probability of complex structures, relying on deterministic
techniques  able  to determine the stability state for a prescribed set of parameters.  The safety
of arches  is  a typical example of new fields for these methods.  Traditionally their stability is
assessed using a deterministic  approach, resulting in safety factors.  To relate these safety
factors  to an absolute safety, requires  a great deal of engineering judgement.  In case of an
existing arch, this judgement depends on a variety of uncertainties such as on the accuracy of
the geometry  measurements, the uncertainty on the material properties, support  conditions and
the constructional history of the structure.  The proposed method calculates an absolute value
for the global probability of failure at level III on the basis of the quantified uncertainties. 
Several techniques are available for the calculation of the global probability of failure at level III
such as  Monte Carlo, first order reliability method or second order reliability method
(FORM/SORM)  in combination with a system analysis.  The recently developed directional
adaptive response surface sampling method (DARS) meets  both requirements of accuracy and
efficiency.  This method will be used to calculate the global probability of failure of arches  in
combination with the limit analysis code Calipous.
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INTRODUCTION 

 Reliability Analysis of Structural Systems 

Assessing the safety of structural masonry involves many uncertainties. This paper presents
a method that permits to build in these uncertainties as good as possible.  The Joint
Committee of Structural Safety defines three levels at which the structural safety can be
assessed (JCCS 1982), Table 1.  These were adopted in the European Standard Eurocode
1 (EC1 1994).  Level III methods are the most accurate. Level I and level II methods are
simplified approaches introduced for computational reasons.  Ideally, they should be
calibrated using a level III method.

Table 1.  Different levels for the calculation of structural safety values

Level Definition

Level III Level III methods such as MC sampling and Numerical Integration are
considered most accurate.  They compute the exact probability of failure
of the whole structural system, or structural elements, using the exact
probability density function of all random variables.

Level II Level II methods such as FORM and SORM compute the probability of
failure by means of an idealization of the limit state function where the
probability density functions of all random variables are approximated by
equivalent normal distribution functions.

Level I Level I methods verify whether or not the reliability of the structure is
sufficient instead of computing the probability of failure explicitly.  In
practice this is often carried out by means of partial safety factors.

Even for level III methods it has to be stressed that some assumptions are made:
(1) all the variables and parameters driving the structures’ behavior are known,
(2) the deterministic model relating them gives an exact estimate of the behavior,
(3) the parameters' exact distribution is known (as well as the resulting joint probability),
(4) the integration of the joint probability on the safe domain is exact.

For the assumptions (1) and (2), it is noticed that these or not inherent to the probabilistic
approach itself.  These assumptions are made in a deterministic stability state calculation
as well.  Assumption (3) is a best estimate of the uncertainty on the parameters.  For
several parameters this will be a good estimate of the real distribution, in others the
estimate will be worse.  But in every case, it remains the common used scientific approach
for quantifying the uncertainties.  Finally, the last assumption (4) depends on the method
used.  In case of a Monte Carlo or Directional Sampling analysis, an infinite amount of
simulations is required to obtain the exact result.  If the number of simulations is limited,
an estimate of the exact value will be obtained.  A number of simulations of the order of
3/pf is required to achieve an acceptable level of accuracy (Melchers 1999).  The low
probabilities that can be expected in normal practice lead to a high number of evaluations.
In case of the safety of arches, this would mean that the limit state function should be



evaluated for a high number of different sets of input parameters, each of them requiring
a call to the external program Calipous.  Calipous is the limit analysis code developed by
Smars (Smars 2000).  Importance sampling is used to direct the sampling into the
interesting regions and to increase the accuracy within a limited number of samples.  

Using FORM, the limit state function will be linearized in the design point.  In case of
SORM, a second order approximation is used in the design point.  Again, both will result
in an estimate of the exact value.  Therefor, FORM/SORM analyses require the first/second
order derivatives of the limit state function in the design point.  In the case of arches, they
are not known analytically as the limit state function is implicit.  Numerical estimations
would imply extra limit state function evaluations, resulting in the same disadvantage as
the MC method.  An additional disadvantage comes from the existence of several potential
failure modes for arches.  Their correlation demands a system analysis to assess the
probability of failure of the whole system and not only of a particular failure mode.

Recently a combined method has been developed: Directional Adaptive Response surface
Sampling (DARS) (Waarts 2000).  It is used when the limit state function is only known
implicitly, but can also be interesting for computational reasons. It combines direct and
indirect evaluations of the limit state function to obtain an optimal use of the response
surface and to limit the amount of direct limit state function evaluations.  In the indirect
evaluations, an estimated response surface is used instead of the original limit state
function.  This method gains ground when each limit state function evaluation requires a
time-consuming calculation, such as a non-linear finite element analysis.

Table 2: Overview of reliability methods for a level III reliability analysis

Level III methods Direct/Indirect
(D/ID)

Numerical integration (NI) D

Monte Carlo (MC) D

Importance Sampling Monte Carlo (ISMC) D

Crude Directional Sampling (DS) D

First Order and Second Order Reliability Method (Form and
Sorm) (level II method) in combination with a system analysis

D

Form/Sorm with an adaptive Response Surface (level II method)
in combination with a system analysis

D-ID

Directional Adaptive Response surface Sampling (DARS) D-ID

The DARS method meets the disadvantages of the other methods to a certain extend. The
limit state function evaluations are used to estimate the response of the system.  This
permits to reduce the number of evaluations for a given accuracy on the estimate of the
failure probability.  On the other hand, the probability of failure of the whole structural



system is calculated, as there is no preference for a certain failure mode.  In the following,
the DARS method will be applied to compute the safety of masonry arches.
The above mentioned methods that are available to assess the probability of failure on level
III, are listed in Table 2.  None is optimal for every particular case.  The choice depends
essentially on the complexity of the problem.  The methods are subdivided into  two
categories: direct (D) and indirect (ID) as they call for a direct or indirect limit state
function evaluation.

DARS - DIRECTIONAL ADAPTIVE RESPONSE SURFACE SAMPLING

The response surface (RS) method is used when the response is only available from
experiments, complex finite element computations or a limit analysis using the Calipous
code as in the case of masonry arches.  An analytical limit state function replaces the real
response function.  The main idea is that the real response being a complex function of
input variables, is approximated by a simple function of the input variables.  In many
cases, a polynomial of low order is sufficient to describe the response of the structure.
Usually a polynomial of first or second order is used in practice including a constant term,
linear terms, quadratic terms and cross-terms, Eq.1:
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In case this would not be sufficient to describe the response accurately, higher order
polynomials or other analytical relationships should be looked for (Montgomery 1997). 

The standard reliability procedure using a response surface (indirect method) can be
outlined as follows:
Step 1.  Selection and definition of the most important random variables.  The number of
variables is limited to a finite number n leaving out possibly an infinite set of parameters
that in the model idealization process have been judged to be of secondary or negligible
importance for the problem at hand (Ditlevsen 1982).  Remark that this requires a certain
amount of engineering judgement.  The same of course holds for a deterministic analysis.
Step 2.  Design of an optimal scheme of points at which the outcome is calculated, using
a deterministic analysis (a limit analysis in this case).  Each variable can be changed
individually or more efficient combinations can be used according to an Optimal Design
of Experiments (ODE) (Montgomery, 1997).  For each set of variables a call to the external
program is made and the outcome is calculated.
Step 3.  Construction of a response surface through these response data using a least
square analysis.
Step 4.  Performing a reliability analysis on the response surface instead of the real
problem.  The type of reliability method (MC, DS, FORM/SORM or other) is of little
importance since the time consuming evaluations using an external program are replaced
by the analytical expression.



This method has some major disadvantages with respect to the required number of limit
state function evaluation (LSFE) and accuracy: 
•The amount of samples (=LSFE) equals 2n+1 in case the random variables are
individually changed, using �i ± f.)i, .  This method does not at all guarantee a reliable
response surface.  For an optimal design, 2n + 2n samples (=LSFE) are required in case
of a so-called "Central Composite Design".  For a high number of random variables (n) this
leads to an enormous number of direct limit state function evaluations.
•Multiple failure modes are badly modeled as the response surface may not find all
important regions (Waarts 2000).

The DARS method is a combination of the direct and indirect method (Waarts 2000).  It
can be looked at as an algorithm minimizing the number of direct limit state function
evaluations.  Each evaluation requires a call to the external program Calipous.  The DARS
procedure is performed in different steps, see Figure 1, illustrated for a mathematical
example in the standard normal space (u-space) with two random variables:
Step 1.  In a first step the value of each random variable is changed individually until the
root (�) of the limit state function is found.  First a linear estimate is calculated, based on
the outcome (LSFE) in the origin of the u-space (standard normal space) (0,0,0,…,0) and
the point (0,0,…,±f,…,0).  When known, the factor f is set equal to the expected reliability
index �.  Experience shows that f=3 performs good as well.  The limit state function is
evaluated in this first approximation.  Further approximations are based on a quadratic fit
through the outcome (LSFE) of the different iteration points.  Each time extra verification
is done to assure convergence to the correct root in the preset direction.  Mostly after 3 to
4 iterations (LSFE) the root is found (limit of safe domain), assumed there is a root in the
specified direction, Figure 1, left part. 
Step 2.  An initial response surface (RS1) is fit through the data using a least square
algorithm, Figure 1, mid part.
Step 3.  This step is an iterative procedure, Figure 1, right part.  The response surface is
adapted (Adaptive Response Surface method (ARS)) and the failure probability or
reliability index are updated until the required accuracy is reached.  Therefor, coarse
directional sampling is performed on the response surface.  For each sample, a first
estimate of the distance �i,RS,i-1 to the origin in the u-space is made based on the response
surface  (RSi-1).  An arbitrary distance �add is used to make distinction between important
and less important directions: �i,RS,i-1 <> �min + �add, in which �min is the minimum distance
found so far.  When �add is set equal to 3, a sufficient accuracy is reached within a
relatively small number of samples.  The value �add = 3 is an arbitrary value that is
optimized for the case of probabilistic design, where target �T values around 3.8 are aimed
at.  In case the obtained root (�i,RS) has a relatively high contribution - �i,RS,i-1 < �min + �add -
to the estimated global failure probability (pf), the root of the real response is used in stead
of the response surface: �i,LSFE.  This requires several extra limit state function evaluations
using the limit analysis Calipous.  The response surface is updated with these new data
from the moment they are available (RSi-1<RSi).  In case the  contribution is less
important - �i,RS,i-1 > �min + �add - the contribution based on the root of the response surface
(�i,RS,i-1) is used, avoiding time consuming limit state function evaluations (LSFE). 
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Figure 1. DARS - step 1-3

It is proved that the expected value of all contributions ( ) is an unbiased( )( )E p f� �p i
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(2)( ) ( )p E p
N

p w h ere pf f i
i

N

i n i R S o r L S F E≈ = =
=
∑� � , : � ,

1

1

2χ λ

The major advantage of the method lies in the number of direct limit state function
evaluations.  These remain proportional to the number of random variables (n).  Waarts
estimated that the number of direct limit state function evaluations is limited to
approximately 15n for an acceptable accuracy: V(�)=0.05 (Waarts, 2000).  For low
reliability values, )(�)=0.15 is proposed as stop criterium. This linear increase gains
interest for high numbers of n.  In addition, there is no preference for a certain failure
mode.  All contributing failure modes are accounted for, resulting in a safety value that
includes the system behaviour, thus on level III.

For purpose of this research, the DARS procedure was implemented in Matlab 5.3 (Matlab
2000). In combination with an automatic interface with the Calipous program (Smars
2000) this provides a powerful tool to calculate the reliability of masonry arches at level
III.



Figure 2. Arches - Failure modes and safety factors �g and �S

SAFETY OF ARCHES

To evaluate the arch safety for a given set of parameters, the thrust line method is used
(Heyman 1982).  It is a limit analysis (LA) method using the equation of equilibrium and
the resistance characteristics of the materials.  In the case of arches, it is usually supposed
that: blocs are infinitely resistant, joints resist infinitely to compression, joints do not resist
to traction and joints resist infinitely to shear.  These hypotheses are certainly restrictive:
the material(s) used to construct the arch do not respect them strictly. It was nevertheless
shown that - under normal circumstances - they are reasonable (Heyman 1982). The limits
of this theory are discussed elsewhere (Smars 2000).

Typical failure modes associated with the limit situations are represented in Figure 2.

Given these hypotheses, it can be shown (Kooharian 1952) that an arch is stable if a thrust
line, remaining entirely inside its shape, can be found.  Analytical expressions relating
parameters to stability are not available for generic situations.  The code Calipous was
developed to compute numerical estimates.  In particular, it can determine safety factors.
The geometrical factor of safety (�g) is defined as the minimal multiplicative factor on the
arch thickness allowing an internal thrust line to be found.  The static factor of safety (�s)
is defined as the maximal multiplicative factor on external forces allowing an internal
thrust line to be found.



Figure 3. Fictitious existing masonry arch

As long as the safety factors exceed one, the structure is in the safe region, the arch is
stable.  If one of the safety factors is smaller than one, the structure is in the unsafe region,
the arch is unstable. This results in the following limit state functions:
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SAFETY ASSESSMENT OF AN EXISTING MASONRY ARCH

As an example, the global failure probability of a masonry arch, Figure 3, will be
determined. Besides, possible actions in case of insufficient safety will be discussed.  A
fictitious example was designed to illustrate the method.

The situation (geometry and forces) is chosen so as to lead to a low geometrical safety
factor (�g = 1.23).  The arch being not far from instability, the uncertainties on geometry
start to play a role.  The geometry indeed is not exactly known.  A function is chosen to
approach the possible variations.  Its parameters are: (1) the mean diameter of the arch r0,
(2) its thickness t, (3) the 2nd order deviation with respect to a perfect circular arch dr and
(4) an eccentric vertical load F, applied in the most critical position.  These parameters are
a translation of the uncertainties that might occur during a survey of the existing arch,
Table 3.  In practice, one needs to choose them carefully. If the important ones are
neglected, the evaluation of the failure probability will yield to non-significant results.
Indeed, in some cases, other factors could be of importance (local geometrical faults for
instance).

The force application point on the arch was chosen to minimize the geometrical and static
safety factors on the perfect geometry.  For this particular example, the standard deviations
of the different random variables were chosen arbitrarily but in a real case these should be



deduced from the measured geometry accounting for the survey technique(s) and for the
force, using an available code.

Table 3. Random variables and their parameters

Random
variables

Probability
density
function

Mean value 
�

Standard
deviation 
)

Coefficient of
variation V [%]

x1 = r0 [m] Normal 2.5 0.02 0.4

x2 = t [m] Normal 0.16 0.02 17

x3= dr [m] Normal 0.0 0.02 /

x4 = F [N] Lognormal 750 150 20

The mean value of these parameters results in the following safety factors:
•geometrical safety factor: �g = 1.23,
•static factor of safety: �s = 2.39.

An interface between the DARS optimization algorithm and the Calipous program was
devised to allow automatic processing.  The standard deviation ()(ß)) or the coefficient of
variation (V(ß)) on the reliability index can be used as a criterion to stop the sampling
process: )(ß)=0.15 or V(ß)=0.05.  As the processing time for an analysis using Calipous
is tolerably small (15 up to 20 seconds per analysis), the focus was not put on optimal time
efficiency and the number of samples N was just set to 500 for illustrative purposes.
However, it is marked where the preset accuracy is reached.  The results are summarized
in Table 4. The computer time (CPU: Pentium 667 MHz, RAM: 128 MB) and number of
limit state function evaluations (LSFE) are listed.  The number of samples N and LSFE
needed to reach the preset accuracy are mentioned too.

Table 4. Results for the initial analysis  

Results � )(�) pf N CPU LSFE

DARS analysis using limit
analysis (Calipous)

1.26
1.21

0.15
0.14

1 10-1

1.1 10-1
371
500

50 min
67 min

149
202

Values based on the
estima- ted Response
Surface gRS

0.93 0.002 1.8 10-1 5 105 8.0 sec /

Direction cosines �, based
on the Response Surface
gRS

�1 (r) �2 (t) �3 (dr) �4 (F)

-0.03 0.94 -0.11 -0.32



Increased thickness:  
t: µ=0.21 m; σ=0.02 m
N=192: β=3.72, pf=1.0 10-4

Increased accuracy:  
t: µ=0.16 m; σ=0.005 m
N=273: β=3.44, pf=2.9 10-4

Initial survey:  
t: µ=0.16 m; σ=0.02 m
N=371: β=1.26, pf=1.0 10-1

Number of Samples N

β

95% Confidence interval β

β =3.7

Figure 4. DARS outcome - Reliability � versus number of Samples N

To reach the preset accuracy )(�)=0.15, 371 samples and 149 LSFE are required.  This
position is marked on Figure 4.  Remark that these 371 samples did only require 149 direct
limit state function evaluations or calls to the Calipous program, although this is higher
than 15n = 60 as preset by Waarts (Waarts 2000).  For the other samples, the estimated
response surface was accurate enough to replace time-consuming direct limit state function
evaluations.  After 500 samples, the standard deviation on the reliability index )(�)=0.14.
Coarse directional sampling would require 2 hours and 10 minutes for 500 samples. 

For the response surface, a polynomial of second order was used.  As the form of the limit
state function is not known beforehand, its functional form has to be estimated.  For most
structural problems a polynomial of first or second order is appropriate.  In other cases a
more complex relation has to be searched for (Montgomery 1997).  To illustrate that the
response of the arch can be represented accurately for a wide range of the stochastic
variables, the probability of failure is calculated by means of a Crude Monte Carlo analysis
based on the final estimate of the response surface:
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This result is added in the lower part of Table 4.  Because of the arithmetic simplicity of
the second order polynomial, only 8 seconds of CPU are required to perform the 500.000
Monte Carlo simulations on the response surface (ß =0.93).  The value based on the



response surface underestimates the real reliability index.  This emphasizes the importance
of using the real outcomes of the limit analysis (Calipous) in the important regions.

The 95% confidence interval for the reliability index ß and global failure probability pf are:
95% CI(ß) = [0.98;1.44] or 95% CI(pf)= [0.07;0.13].  The evolution of the reliability
index as a function of the number of simulations is presented in Figure 4. Upper- and lower
boundaries of the 95% confidence interval are shown in dashed line.

The previous result indicates that the structure does not meet the target reliability index
according to the European Standard Eurocode 1 (EC1, 1994): ßT = 3.7.  To meet the safety
requirements, two options can be taken: (1) perform a more accurate survey of the arch or
(2) consolidate the structure.  In both cases it is interesting to determine the most critical
parameters with respect to the failure probability in order to maximize the efficiency of the
action(s) taken.  Naturally, if the safety was considered sufficient, then nothing should be
done.

The direction cosines of the final estimate of the response surface at the failure (or design)
point (Table 4: �1, ..., �4) are measures of the relative influences of the parameters.  Here,
the thickness of the arch is the most important parameter (�2 = 0.94).  The gain of a more
accurate survey of the thickness can be evaluated quickly using the response surface.  Thus,
if the standard deviation could be limited to )(t) = 0.005 m (instead of the original value
of 0.02 m), the response surface directly gives a first estimate of the probability of failure:
ß = 3.0 or pf = 1.3 10-3.  Observing that the Response Surface tends to underestimate the
reliability index, a new analysis is performed to update this first estimate.  These data are
added in Table 5 and on Figure 4.  Indeed, the real reliability index ß = 3.53 is higher than
the value estimated based on the response surface.  It is interesting to see that the reliability
index ß = 3.53 almost equals the target reliability index ßT = 3.7-3.8.  If it is decided that
this is an acceptable safety level, further consolidation would no longer be required,
leaving the structure maximally unaffected, in its authentic state.  At this point, the
importance of the choice of parameters again must be stressed.  The parameter “time”
could be very important: the abutments may settle inducing changes in the global
geometry.  If this is the case, the initial model might no longer cover the real structural
behavior and the outcome would no longer be valid.  If so, monitoring of these settlements
can be used to ensure the validity of the chosen set of parameters.

Table 5. DARS analysis increased accuracy or thickness

Results � V(�) pf N CPU LSFE

DARS analysis increased
accuracy
t: (� = 0.16, )) = 0.005 m)

3.44
3.53

0.05
0.03

2.9 10-4

2.1 10-4
273
500

22 min
41 min

67
122

DARS analysis increased
thickness
t: (�� = 0.21, ) = 0.02 m)

3.72
3.75

0.05
0.02

1.0 10-4

0.9 10-4
192
500

16 min
52 min

48
126



If it is decided not to perform more accurate surveys for reasons of accessibility, time or
expenses, then a consolidation would become necessary.  One could for instance look for
the required mean thickness of the arch to achieve the standard reliability of �T=3.7 preset
in EC1. This is most probably not a realistic reinforcement project, but it can exemplify
the use of the method to calibrate interventions.  Again the response surface leads to a first
estimate: �(t)=0.21 m. The reliability index increases to: �=3.75 or: pf=0.9 10-4, see Figure
4 and Table 5.  The required number of samples and limit analyses is added in Table 5.

CONCLUSIONS

This paper deals with level III methods able to calculate the global failure probability of
a structural system.  The method is illustrated for the safety assessment of an existing
masonry arch.  Based on a first survey of the arch, an estimate of its safety can be
calculated, accounting for the uncertainty of the measurements.  Based on this analysis the
most sensitive parameter(s) with respect to failure can be determined.  The effect of
possible interventions can be estimated a priori.  For the present example of the masonry
arch, this means that the initial low safety is mainly due to an inaccurate survey.  If a more
accurate survey of the thickness (the most critical parameter) can be performed, the extra
knowledge would lead to a significant decrease of the estimated failure probability.  In
doing so, the monument remains intact, keeping its authenticity. If an intervention is
necessary, optimal parameters can be estimated just to reach a target reliability index as
preset in standard design codes.
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