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SAFETY OF ARCHES- A PROBABILISTIC APPROACH

L. Schueremans?, P. Smars?, D. Van Gemert*

ABSTRACT

Nowadays, powerful methodsare available forthe calculation of structural safety values. These
permit to cal culate the global failure probability of complex structures, relying on deterministic
techniques able to determine the stability state for a prescribed set of parameters. The safety
of arches is atypical example of new fields for these methods. Traditionally their stability is
assessed using a deterministic approach, resulting in safety factors. To relate these safety
factors to an absolute safety, requires a great deal of engineering judgement. In case of an
existing arch, this judgement depends on a variety of uncertainties such as on the accuracy of
the geometry measurements, the uncertainty on the material properties, support conditionsand
the constructional history of the structure. The proposed method cal culates an absolute value
for the global probability of failure at level 111 on the basis of the quantified uncertainties.
Several techniques are available for the calculation of the global probability of failure at level 111
such as Monte Carlo, first order reliability method or second order reliability method
(FORM/SORM) in combination with a system analysis. The recently developed directional
adaptive response surface sampling method (DARS) meets both requirements of accuracy and
efficiency. This method will be used to calculate the global probability of failure of arches in
combination with the limit analysis code Calipous.
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INTRODUCTION

Reliability Analysis of Structural Systems

Assessing thesafety of structural masonry invol vesmany uncertainties. Thispaper presents
a method that permits to build in these uncertainties as good as possible. The Joint
Committee of Structural Safety defines three levels at which the structural safety can be
assessed (JCCS 1982), Table 1. These were adopted in the European Standard Eurocode
1 (EC1 1994). Levd Il methods are the most accurate. Level | and level 1| methods are
simplified approaches introduced for computational reasons. Idedlly, they should be
calibrated using aleve I11 method.

Table 1. Different levelsfor the calculation of structural safety values
Leve Definition

Levd Il Levd Il methods such as MC sampling and Numerical Integration are
considered most accurate. They compute the exact probability of failure
of the whole structural system, or structural dements, using the exact
probability density function of al random variables.

Leve Il Levd Il methods such as FORM and SORM compute the probability of
failure by means of an idealization of the limit state function where the
probability density functions of al random variables are approximated by
equivalent normal distribution functions.

Levd | Leve | methods verify whether or not the reliability of the structureis
sufficient instead of computing the probability of failure explicitly. In
practice thisis often carried out by means of partial safety factors.

Even for level [11 methodsit has to be stressed that some assumptions are made:

(2) al the variables and parameters driving the structures’ behavior are known,

(2) the deterministic model relating them gives an exact estimate of the behavior,

(3) the parameters exact distribution isknown (aswell asthe resulting joint probability),
(4) theintegration of the joint probability on the safe domain is exact.

For theassumptions (1) and (2), it is noticed that these or not inherent to the probabilistic
approach itself. These assumptions are madein a deterministic stability state calculation
as well. Assumption (3) is a best estimate of the uncertainty on the parameters. For
several parameters this will be a good estimate of the real distribution, in others the
estimatewill beworse. But in every case, it remainsthe common used scientific approach
for quantifying the uncertainties. Finally, thelast assumption (4) depends on the method
used. In case of a Monte Carlo or Directional Sampling analysis, an infinite amount of
simulationsisrequired to obtain the exact result. If the number of smulationsislimited,
an estimate of the exact value will be obtained. A number of simulations of the order of
3/p; is required to achieve an acceptable level of accuracy (Melchers 1999). The low
probabilitiesthat can be expected in normal practicelead to ahigh number of evaluations.
In case of the safety of arches, this would mean that the limit state function should be



evaluated for ahigh number of different sets of input parameters, each of them requiring
acall tothe external program Calipous. Calipousisthelimit analysis code devel oped by
Smars (Smars 2000). Importance sampling is used to direct the sampling into the
interesting regions and to increase the accuracy within a limited number of samples.

Using FORM, the limit state function will be linearized in the design point. In case of
SORM, a second order approximation isused in the design point. Again, both will result
inan estimateof theexact value. Therefor, FORM/SORM analysesrequirethefirst/second
order derivatives of thelimit state function in the design point. Inthe case of arches, they
are not known analytically as the limit state function isimplicit. Numerical estimations
would imply extralimit state function evaluations, resulting in the same disadvantage as
theMC method. An additional disadvantage comesfrom the existence of several potential
faillure modes for arches. Their correlation demands a system analysis to assess the
probability of failure of the whole system and not only of a particular failure mode.

Recently a combined method has been developed: Directional Adaptive Response surface
Sampling (DARS) (Waarts 2000). It isused when the limit state function is only known
implicitly, but can also be interesting for computational reasons. It combines direct and
indirect evaluations of the limit state function to obtain an optimal use of the response
surface and to limit the amount of direct limit state function evaluations. In theindirect
evaluations, an estimated response surface is used instead of the original limit state
function. This method gains ground when each limit state function evaluation requires a
time-consuming cal culation, such as a non-linear finite dement analysis.

Table 2: Overview of reliability methods for alevel 111 reliability analysis

Levd Il methods Direct/Indirect
(D/1D)
Numerical integration (NI) D

Monte Carlo (MC)
Importance Sampling Monte Carlo (ISMC)
Crude Directiona Sampling (DS)

First Order and Second Order Reliability Method (Form and
Sorm) (level 11 method) in combination with a system analysis

Form/Sorm with an adaptive Response Surface (level 1| method) D-ID
in combination with a system analysis

Directional Adaptive Response surface Sampling (DARS) D-ID

The DARS method meets the disadvantages of the other methodsto a certain extend. The
limit state function evaluations are used to estimate the response of the system. This
permits to reduce the number of evaluations for a given accuracy on the estimate of the
failure probability. On the other hand, the probability of failure of the whole structural



system iscalculated, asthereisno preferencefor a certain failuremode. In thefollowing,
the DARS method will be applied to compute the safety of masonry arches.
Theabovementioned methodsthat areavailableto assessthe probability of failureon level
I11, arelisted in Table 2. Noneis optimal for every particular case. The choice depends
essentially on the complexity of the problem. The methods are subdivided into two
categories: direct (D) and indirect (ID) as they call for a direct or indirect limit state
function evaluation.

DARS- DIRECTIONAL ADAPTIVE RESPONSE SURFACE SAMPLING

The response surface (RS) method is used when the response is only available from
experiments, complex finite element computations or alimit analysis using the Calipous
code asin the case of masonry arches. An analytical limit state function replaces thereal
response function. The main idea is that the real response being a complex function of
input variables, is approximated by a simple function of the input variables. In many
cases, a polynomial of low order is sufficient to describe the response of the structure.
Usually apolynomial of first or second order isused in practiceincluding aconstant term,
linear terms, quadratic terms and cross-terms, Eq.1:

n n n
gRS =a +Zbixi +chinin (1)
i=1

i=1 j=1

In case this would not be sufficient to describe the response accurately, higher order
polynomials or other analytical relationships should be looked for (Montgomery 1997).

The standard rdiability procedure using a response surface (indirect method) can be
outlined as follows:

Step 1. Selection and definition of the most important random variables. The number of
variablesislimited to afinite number n leaving out possibly an infinite set of parameters
that in the model idealization process have been judged to be of secondary or negligible
importance for the problem at hand (Ditlevsen 1982). Remark that thisrequiresacertain
amount of engineering judgement. The same of course holdsfor adeterministic analysis.
Step 2. Design of an optimal scheme of points at which the outcomeis calculated, using
a deterministic analysis (a limit analysis in this case). Each variable can be changed
individually or more efficient combinations can be used according to an Optimal Design
of Experiments (ODE) (Montgomery, 1997). For each set of variablesacall tothe external
program is made and the outcome is cal cul ated.

Step 3. Construction of a response surface through these response data using a least
square analysis.

Step 4. Performing a reliability analysis on the response surface instead of the real
problem. The type of reliability method (MC, DS, FORM/SORM or cther) is of little
importance since the time consuming eval uations using an external program are replaced
by the analytical expression.



This method has some major disadvantages with respect to the required number of limit
state function evaluation (L SFE) and accuracy:

*The amount of samples (=LSFE) equals 2n+1 in case the random variables are
individually changed, using 4 + f.¢;, . Thismethod does not at al guarantee areliable
response surface. For an optimal design, 2" + 2n samples (=LSFE) arerequired in case
of aso-called "Central Composite Design". For ahigh number of random variables(n) this
leads to an enormous number of direct limit state function evaluations.

*Multiple failure modes are badly modeled as the response surface may not find all
important regions (Waarts 2000).

The DARS method is a combination of the direct and indirect method (Waarts 2000). It
can be looked at as an algorithm minimizing the number of direct limit state function
evaluations. Each evaluation requiresacall tothe external program Calipous. TheDARS
procedure is performed in different steps, see Figure 1, illustrated for a mathematical
examplein the standard normal space (u-space) with two random variables:

Step 1. Inafirst step the value of each random variableis changed individually until the
root () of the limit state functionisfound. First alinear estimateis calculated, based on
the outcome (L SFE) in the origin of the u-space (standard normal space) (0,0,0,...,0) and
thepoint (0,0,...,£f,...,0). Whenknown, thefactor f isset equal to the expected reliability
index f. Experience shows that f=3 performs good aswell. The limit state function is
evaluated inthisfirst approximation. Further approximations are based on aquadraticfit
through the outcome (L SFE) of the different iteration points. Eachtimeextraverification
is doneto assure convergence to the correct root in the preset direction. Mostly after 3to
4 iterations (L SFE) theroot isfound (limit of safe domain), assumed thereisaroot inthe
specified direction, Figure 1, left part.

Step 2. Aninitial response surface (RS)) is fit through the data using a least square
algorithm, Figure 1, mid part.

Step 3. Thisstepisan iterative procedure, Figure 1, right part. The response surfaceis
adapted (Adaptive Response Surface method (ARS)) and the failure probability or
reliability index are updated until the required accuracy is reached. Therefor, coarse
directional sampling is performed on the response surface. For each sample, a first
estimate of the distance 4, x4, to the origin in the u-space is made based on the response
surface (RS.,). Anarbitrary distance A, is used to make distinction between important
and lessimportant directions: 4, pgi.; <> A + Age inwhich A, isthe minimum distance
found so far. When A, is set equal to 3, a sufficient accuracy is reached within a
relatively small number of samples. The vaue A, = 3 is an arbitrary value that is
optimized for the case of probabilistic design, wheretarget 3; valuesaround 3.8 are aimed
at. Incasetheobtained root (4, r)) hasarelatively high contribution - 4, pgi.; < A + Augq -
totheestimated global failure probability (p;), theroot of thereal responseisused in stead
of theresponse surface: 4, . Thisrequiresseveral extralimit state function evaluations
using the limit analysis Calipous. The response surface is updated with these new data
from the moment they are available (RS_=RS). In case the contribution is less
important - A, gsi.; > Ay + Aq - the contribution based on the root of the response surface
(A rsi-1) 1S Used, avoiding time consuming limit state function evaluations (L SFE).
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Figure 1. DARS - step 1-3

It is proved that the expected value (E(ﬁf )) of al contributions ( p; ) is an unbiased
estimate of the global failure probability p; (Melcher, 1999; Waarts, 2000):

N
P zE(ﬁf):%Zﬁiv where: :Xﬁ<7\‘i,RSor LSFE) @

I
[

The major advantage of the method lies in the number of direct limit state function
evaluations. These remain proportional to the number of random variables (n). Waarts
estimated that the number of direct limit state function evaluations is limited to
approximately 15n for an acceptable accuracy: V(£)=0.05 (Waarts, 2000). For low
reliability values, o(f)=0.15 is proposed as stop criterium. This linear increase gains
interest for high numbers of n. In addition, there is no preference for a certain failure
mode. All contributing failure modes are accounted for, resulting in a safety value that
includes the system behaviour, thus on level I11.

For purpose of thisresearch, the DARS procedurewasimplemented in Matlab 5.3 (Matlab
2000). In combination with an automatic interface with the Calipous program (Smars
2000) this provides a powerful tool to calculate the reliability of masonry arches at level
.



SAFETY OF ARCHES

To evaluate the arch safety for a given set of parameters, the thrust line method is used
(Heyman 1982). Itisalimit analysis (LA) method using the equation of equilibrium and
theresistance characteristics of the materials. Inthe case of arches, it isusually supposed
that: blocsareinfinitely resistant, jointsresist infinitely to compression, jointsdo not resist
totraction and jointsresist infinitely to shear. These hypotheses are certainly restrictive:
the material (s) used to construct the arch do not respect them strictly. It was nevertheless
shown that - under normal circumstances- they arereasonable (Heyman 1982). Thelimits
of thistheory are discussed € sewhere (Smars 2000).

Typical failure modes associated with the limit situations are represented in Figure 2.

«’ | T
Geometric /¢ “\’\
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Figure 2. Arches - Failure modes and safety factors o, and o5

Given these hypotheses, it can be shown (Kooharian 1952) that an archisstableif athrust
line, remaining entirely inside its shape, can be found. Analytical expressions relating
parameters to stability are not available for generic situations. The code Calipous was
developed to compute numerical estimates. In particular, it can determine safety factors.
Thegeometrical factor of safety (¢,) is defined asthe minimal multiplicativefactor on the
arch thickness allowing an internal thrust lineto befound. The static factor of safety (&)
is defined as the maximal multiplicative factor on external forces allowing an internal
thrust line to be found.



As long as the safety factors exceed one, the structure is in the safe region, the arch is
stable. If oneof the safety factorsissmaller than one, thestructureisin the unsaferegion,
the arch is unstable. Thisresultsin the following limit state functions:

9:(X)=0g(X)-1 .
g,(X)=0s(X)-1

SAFETY ASSESSMENT OF AN EXISTING MASONRY ARCH

As an example, the global failure probability of a masonry arch, Figure 3, will be
determined. Besides, possible actions in case of insufficient safety will be discussed. A
fictitious example was designed to illustrate the method.

P =2000 kg/m?

r=ro+dr cos0
ro~N[2.5; (0.02)7]
dr~N[0; (0.02)4

Figure 3. Fictitious existing masonry arch

The situation (geometry and forces) is chosen so as to lead to a low geometrical safety
factor (¢4 = 1.23). Thearch being not far from instability, the uncertainties on geometry
start to play arole. The geometry indeed is not exactly known. A function is chosen to
approach the possiblevariations. Itsparametersare: (1) the mean diameter of thearch r,,
(2) itsthicknesst, (3) the 2™ order deviation with respect to a perfect circular arch dr and
(4) an eccentric vertical load F, applied in themost critical position. Theseparametersare
atrandation of the uncertainties that might occur during a survey of the existing arch,
Table 3. In practice, one needs to choose them carefully. If the important ones are
neglected, the evaluation of the failure probability will yield to non-significant results.
Indeed, in some cases, other factors could be of importance (local geometrical faults for
instance).

Theforce application point on the arch was chosen to minimizethe geometrical and static
safety factorson the perfect geometry. For thisparticular example, thestandard deviations
of the different random variables were chosen arbitrarily but in areal casethese should be



deduced from the measured geometry accounting for the survey technique(s) and for the
force, using an available code.

Table 3. Random variables and their parameters

Random Probability Mean value Standard Coefficient of

variables density 7 deviation variation V [%]
function o

Xy = o [m] Normal 2.5 0.02 0.4

X, =t [m] Normal 0.16 0.02 17

Xg= dr [m] Normal 0.0 0.02 /

X, = F[N] Lognormal 750 150 20

The mean value of these parameters resultsin the following safety factors:
sgeometrical safety factor: a; = 1.23,
estatic factor of safety: ar, = 2.39.

An interface between the DARS optimization algorithm and the Calipous program was
devised to allow automatic processing. The standard deviation (o(f3)) or the coefficient of
variation (V(RR)) on the rdiability index can be used as a criterion to stop the sampling
process. 0(3)=0.15 or V(3)=0.05. Asthe processing time for an analysis using Calipous
istolerably small (15 up to 20 seconds per analysis), the focus was not put on optimal time
efficiency and the number of samples N was just set to 500 for illustrative purposes.
However, it is marked where the preset accuracy isreached. The results are summarized
in Table 4. The computer time (CPU: Pentium 667 MHz, RAM: 128 MB) and number of
limit state function evaluations (LSFE) are listed. The number of samples N and LSFE
needed to reach the preset accuracy are mentioned too.

Table 4. Resultsfor theinitial analysis

Results S op) N CPU LSFE
DARSanaysisusinglimit 1.26 015 110" 371 50 min 149
analysis (Calipous) 121 014 1110 500 67 min 202
Values based on the 093 0002 1810' 510° 80sec /
estima- ted Response

Surface ggs

Direction cosines o, based o, (r) o, (t) oaz(dr) a,(F)
on the Response Surface
Ors -0.03 0.94 -0.11 -0.32




To reach the preset accuracy o(£)=0.15, 371 samples and 149 LSFE arerequired. This
positionismarked on Figure4. Remark that these 371 samplesdid only require 149 direct
limit state function evaluations or calls to the Calipous program, although thisis higher
than 15n = 60 as preset by Waarts (Waarts 2000). For the other samples, the estimated
response surfacewasaccurate enough toreplacetime-consuming direct limit statefunction
evaluations. After 500 samples, the standard deviation on thereliability index o(£)=0.14.
Coarse directional sampling would require 2 hours and 10 minutes for 500 samples.
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Figure 4. DARS outcome - Reliability 3 versus number of Samples N

For the response surface, a polynomial of second order wasused. Astheform of thelimit
state function is not known beforehand, its functional form hasto be estimated. For most
structural problems a polynomial of first or second order is appropriate. In other casesa
more complex relation has to be searched for (Montgomery 1997). Toillustrate that the
response of the arch can be represented accurately for a wide range of the stochastic
variables, theprobability of failureiscal culated by meansof aCrude Monte Carloanalysis
based on the final estimate of the response surface:

Jrs =—01467 —0.3637x, +95282x, —0.9977x, —0.004x,

2 2 2 2 (4)

+0.0086x; —1.8373x; —0.6831x5 +0.0000x,
Thisresult isadded in the lower part of Table 4. Because of the arithmetic simplicity of
the second order polynomial, only 8 seconds of CPU are required to perform the 500.000
Monte Carlo simulations on the response surface (R =0.93). The value based on the



responsesurfaceunderestimatesthereal rdiabilityindex. Thisemphasizestheimportance
of using thereal outcomes of the limit analysis (Calipous) in the important regions.

The95% confidenceinterval for therdiability index 3 and global failureprobability p; are:
95% CI(R) = [0.98;1.44] or 95% Cl(p;)= [0.07;0.13]. The evolution of the reliability
index asafunction of thenumber of smulationsis presented in Figure 4. Upper- and lower
boundaries of the 95% confidence interval are shown in dashed line.

The previous result indicates that the structure does not meet the target reliability index
according to the European Standard Eurocode 1 (EC1, 1994): 3, = 3.7. Tomeet the safety
requirements, two options can be taken: (1) perform amore accurate survey of the arch or
(2) consolidate the structure. In both casesit isinteresting to determine the most critical
parameterswith respect to thefailure probability in order to maximizetheefficiency of the
action(s) taken. Naturally, if the safety was considered sufficient, then nothing should be
done.

Thedirection cosines of thefinal estimate of the response surface at the failure (or design)
point (Table4: &, ..., 0t,) are measures of the relativeinfluences of the parameters. Here,
the thickness of the arch isthe most important parameter (¢, = 0.94). Thegain of amore
accurate survey of thethickness can be eval uated quickly using theresponse surface. Thus,
if the standard deviation could be limited to o(t) = 0.005 m (instead of the original value
of 0.02 m), the response surface directly gives afirst estimate of the probability of failure:
R=3.00r p;= 1.3 103, Observing that the Response Surface tends to underestimate the
reliability index, anew analysisis performed to update thisfirst estimate. These dataare
addedin Table5 and on Figure 4. Indeed, thereal rdiability index 3=3.53 ishigher than
thevalue estimated based on theresponsesurface. Itisinterestingto seethat therdiability
index 3= 3.53 almost equalsthetarget reliability index 3; = 3.7-3.8. If it isdecided that
this is an acceptable safety level, further consolidation would no longer be required,
leaving the structure maximally unaffected, in its authentic state. At this point, the
importance of the choice of parameters again must be stressed. The parameter “time”
could be very important: the abutments may settle inducing changes in the global
geometry. If thisisthe case, the initial model might no longer cover thereal structural
behavior and the outcome would no longer bevalid. If so, monitoring of these settlements
can be used to ensure the validity of the chosen set of parameters.

Table 5. DARS analysisincreased accuracy or thickness
Results S VIO N CPU LSFE

DARS analysisincreased 344 005 2910* 273 22min 67
accuracy 353 003 2110* 500 41 min 122
t: (4 = 0.16, ¢ = 0.005 m)

DARS analysisincreased 372 005 1.010* 192 16 min 48
thickness 375 002 0910* 500 52min 126
t: (0 =0.21, 0 = 0.02 m)




If it is decided not to perform more accurate surveys for reasons of accessihility, time or
expenses, then a consolidation would become necessary. One could for instance look for
the required mean thickness of the arch to achievethe standard reliability of 5,=3.7 preset
in ECL. Thisismost probably not arealistic reinforcement project, but it can exemplify
theuse of themethod to calibrateinterventions. Again theresponse surfaceleadsto afirst
estimate: y(t)=0.21 m. Thereliabilityindex increasesto: #=3.750or: p=0.9 10*, seeFigure
4 and Table 5. Therequired number of samples and limit analysesis added in Table 5.

CONCLUSIONS

This paper dealswith level 111 methods able to calculate the global failure probability of
a structural system. The method is illustrated for the safety assessment of an existing
masonry arch. Based on a first survey of the arch, an estimate of its safety can be
calculated, accounting for the uncertainty of themeasurements. Based on thisanalysisthe
most sensitive parameter(s) with respect to failure can be determined. The effect of
possible interventions can be estimated apriori. For the present example of the masonry
arch, thismeansthat theinitial low safety ismainly dueto an inaccurate survey. If amore
accurate survey of the thickness (the most critical parameter) can be performed, the extra
knowledge would lead to a significant decrease of the estimated failure probability. In
doing so, the monument remains intact, keeping its authenticity. If an intervention is
necessary, optimal parameters can be estimated just to reach atarget reliability index as
preset in standard design codes.
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