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ABSTRACT 
 
On the basis of the classical Castigliano’s theory, a step-wise procedure for the non-linear 
analysis of multi-span masonry arch bridges is developed and implemented by standard 
programming of a commercial F.E. code.  The mechanical model for masonry is assumed 
perfectly elasto-plastic in compression and no tensile resistant (NTR). The iterative procedure 
is set following the standard scheme of an elastic prevision and subsequent non-linear 
correction of the nodal forces. Tensile stresses are not allowed to develop on the mortar joint 
by means of an adequate re-meshing of the arch, while the plastic response is taken into 
account via additional fictitious external forces. 
 
The procedure is applied to a flat arch with different models: a No Tensile Resistant (NTR) 
model that accounts for the original Castigliano’s method, and models with different 
compressive strength.  The structural response is estimated for different loading positions, 
pointing out the change of the collapse mechanism as a function of the geometric and 
mechanical parameters.  The flexibility of the procedure allows the analysis of twin-span and 
three-span models, so that the effect of abutment compliance and material crushing in 
complete bridge models is taken into account and quantified. 
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INTRODUCTION 
 

A large number of ancient arch bridges is still in service in their original configuration, 
facing increasing vehicle loads and speed; for this reason reliable estimates of the 
structural response of these bridges are needed. 

The classical methods of assessment (Heyman, 1982) refer to a single arch, assuming 
that the skewbacks are perfect built-in ends and considering simplified loading 
conditions.  These procedures do not give any estimate of the structural response but 
either ensure the existence of an equilibrium configuration or give rough estimates of 
the limit load.  The parameters relevant to the structural response, such as masonry 
strength, mechanical characteristics of the fill, adjacent spans, etc., are taken into 
account by means of corrective factors (Department of Transport, 1993.a,b, Hughes and 
Blackler, 1997) of uncertain heuristic origin. 

To get a deeper insight in this kind of structures several different procedures have been 
developed (Hughes and Blackler, 1997) on the basis of a relevant series of experimental 
tests both on models and on real structures (Page, 1987, 1993). 

The mechanism approach to arch collapse, originated from the first work of Pippard and 
Ashby (1939) and Pippard (1948), looks for the minimum load, once its position is 
defined, needed to introduce a number of hinges at the arch intradoes and extradoes 
large enough to transform the arch into a mechanism.  The limit load is obtained 
through an application of the kinematic theorem (Heyman, 1982) that takes the position 
of the hinges as the unknowns of the problem.  This approach finds its latest results in 
the work by Criesfield and Packham (1988), Harvey (1988), Blasi and Foraboschi 
(1994), Falconer (1994), Gilbert and Melbourne (1994), Hughes (1995) and Como 
(1998). 

Such an approach is suitable for semicircular arches provided that the mechanism 
activates when the stress state is still rather limited, but this is not so for flat arches or 
for arches with very weak mortar joints.  In this case the compressive stresses turn out to 
be significantly high when a collapse mechanism is still far from activating, so that the 
non linear elasto-plastic response of masonry, i.e. of the mortar joints, becomes a 
relevant parameter of the structural behaviour of the arch. 

The elasto-plastic collapse can be dealt with in several ways.  On the basis of 
simplifying assumptions for the plastic stress distribution in the mortar joints (Clemente 
et al., 1995) or of experimental tests (Taylor and Mallinder, 1993, Boothby, 1997) yield 
surfaces are obtained following the classical approach to plasticity; the limit load is 
obtained assuming that collapse is met when the axial thrust and the bending moment 
from the thrust line theory lie on the limit surface. 

Another popular method of assessment makes use of F.E. procedures.  The local collapse 
condition is usually derived from experimental tests and introduced into a F.E. model in 
which the arch is considered a mono-dimensional structure (Criesfield, 1985, Bridle and 
Hughes, 1990, Choo et al., 1991, Molins and Roca, 1998.a,b) a bi-dimensional (Loo and 
Yang, 1991, Falconer, 1994, Boothby et al., 1998, Owen et al., 1998, Ng et al. 1999, 
Lourenço and Rots, 2000, among the latest results) or three-dimensional one (Rosson et 
al., 1998).  While mono-dimensional models proved to be reliable and flexible enough to 
be used in assessment and design procedures for arch bridges, requiring limited 



computational effort, bi- and three-dimensional models are able of giving detailed 
information on local phenomena at expenses of a relevant complexity of the model and 
of long computing times.  For this reason analyses of multi-span arch bridges have been 
performed, up to present, mainly by means of mono–dimensional finite elements 
(Molins and Roca, 1998.b), while bi-dimensional analyses had to be limited to quite 
simple models (Falconer, 1994). 

The effect of the adjacent spans on the loaded arch had also been studied experimentally 
on 1:5 multi-span bridge models (Royles and Hendry, 1991, Melbourne and Wagstaff, 
1993, and Melbourne et al., 1995, Ponniah and Prentice, 1998) and of mechanism ones 
(Hughes, 1995).  The results, neglecting the elasto-plastic response of the joints, show a 
reduction of the limit load due to the presence of the adjacent arches somewhere in-
between 20% to 50% of the limit load for a single span arch bridge. 

In this paper, following the approach by Bridle and Hughes (1990) and Choo et al. 
(1991), Castigliano’s elastic method (1879) is implemented in a mono-dimensional F.E. 
procedure and is extended in order to take into account the plastic response of the 
mortar joints.  The flexibility of the procedure allows the analysis of several single, twin 
and multi-span arch bridges pointing out the way the structural response of the bridge is 
affected by the different mechanical and geometrical factors, i.e. masonry strength and 
arch barrel geometry.  The obtained results give further information on the arch collapse 
mechanisms, allowing some considerations on the multi-span arch bridge structural 
behaviour. 
 
 

ELASTO-PLASTIC  EXTENSION  OF  CASTIGLIANO’S  APPROACH 
 

According to Castigliano’s approach, the interface between adjacent voussoirs can be 
represented by means of an elastic unilateral contact surface.  In this way no traction is 
allowed to develop on the interface and no limit is set to the compressive stresses 
developed in the joint, Fig. 1. 
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Fig. 1.  No-tensile resistant model for the voussoirs’ interface, Castigliano (1879) 

The constitutive equations for the no-tensile resistant model can be derived in terms of 
the effective section height x: 
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where the superscript E stands for the forces equilibrated by a No Tensile Resistant 
material fully elastic in compression. 



In Castigliano’s original work this model is assumed to represent dry assemblages of 
voussoirs or weak mortar joints.  In the first case the model is somewhat questionable 
because it does not take into account the spalling collapse of the compressed edge 
(Taylor and Mallinder, 1993).  On the other side mortar joints are subjected to a bi-axial 
compressive stress state due to the confinement effect of the voussoirs and, therefore, 
can exhibit quite high compressive stresses and significant plastic strains. 

An improved mechanical model of the interface should assume a limit stress σc in 
compression beyond which plastic strains are allowed.  Even though the proposed 
procedure is general and not related to a specific elasto-plastic model for the mortar 
joint, in the following reference is made to a perfect elasto-plastic constitutive model. 

Under the plane section hypothesis, i.e. a linear distribution of strains, Fig. 2, the 
constitutive equations for the joints can be derived: 
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Fig. 2.  No-tensile resistant perfect compressive elasto-plastic model for the joint interface. 

 
The plastic cut-off of Fig. 2 can be computed as the difference between the elastic 
response of the effective section x – eq.s (1) - and the elasto-plastic response – eq.s (2): 
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The constitutive eq.s (2) and (3) are suitable for setting up an iterative procedure for the 
analysis of masonry arch-type structures.  Even though this interface model has been 
developed with reference to a perfectly elasto-plastic response of the mortar joint but is 
suitable to represent also more complex constitutive models. 

Consider an assemblage of voussoirs, such as the straight lintel of Fig. 3, with an axial 
thrust and bending moment high enough to induce opening at the bottom edge and to 
reach the limit compressive stress at top edge of the voussoirs, like in Fig. 2. 
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Fig. 3.  Straight lintel (a) with no redundancy; (b) one time redundant. 

The linear extension x of the compressed part of the section and of its plastic part y can 
be assumed as unknowns of the problem.  According to Castigliano’s method, let 
assume that the kth approximation of the solution is known, xk and yk for which the 
corresponding axial thrust Nk

EP and moment Mk
EP and are deduced from eq.s (2); let 

assume that they are not able of equilibrating the current loading thrust Nk and moment 
Mk due to the opening of the joint and to its plastic response in compression.  In order to 
avoid tensile stresses, the cross section height is updated and set equal to the current 
compressed part, hk+1=xk.  Eq.s (3) represent, now, the only non equilibrated part of the 
external loads, due to the non linear material response; if we consider the elastic 
response of the section with updated height, these non equilibrated forces can be 
considered fictitious external loads to be added to the external ones. The procedure is 
summarized in the following. 

1) Say N0 and M0 the external loads. 
2) The kth approximation of the solution is known: xk, yk, for which eq.s (3) show that 

the external loads are still unbalanced by an amount ∆Nk
EP for the axial thrust and 

∆Mk
EP on the bending moment. 

3) The geometry of the section is updated to the effective height: hk+1 = xk and the 
section is considered linear elastic. 

4) The unbalanced forces ∆Nk
EP and ∆Mk

EP are added to the external loads: Nk+1 = N0 + 
∆Nk

EP, Mk+1 = M0 + ∆Mk
EP; the updated loads are applied to the new geometry so that 

from the elastic response the new approximation xk+1, yk+1 to the solution is obtained. 
5) Convergence is met according to a criterion referring to the unbalanced part of the 

axial thrust: 
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where ε is the accepted tolerance. 

The starting solution h0, x0 and y0 is the elastic response of the structure in its initial full 
geometry to the applied external loads only. 
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Fig. 4.  Convergence of the procedure for a) isostatic and b) redundant straight 
lintel 

 
In the example of Fig. 3 the external loads are constant being the problem non linear 
only in the material response.  It can be proved that the procedure is convergent to the 
exact solution: 
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The outlined procedure is suitable for applications also on redundant structures, such as 
that of Fig. 3.b.  Fig. 4 shows the convergence of the algorithm to the exact solution as a 
function of the number of iterations for both the isostatic and hyperstatic lintel in both 
the cases of elastic–No Tensile Resistant interfaces (Castigliano’s model) and elastic-
plastic–No Tensile Resistant model herein proposed. 
 
 

SINGLE ARCH  ELASTO-PLASTIC  RESPONSE 
 

The extension of Castigliano’s method presented in the previous section is essentially a 
mechanical model for the mortar joint.  Therefore, it can be applied to generic structures 
also if the relation among axial thrust, bending moment, material properties and 
geometry is not known explicitly as in the straight lintel of Fig. 3.b.  The procedure can 
be applied to generic structures following a predictor/corrector iterative scheme. 

1. The (k-1)th approximation of the solution is known, i.e. for each ith section the height 
hk-1

(i), its compressed part xk-1
(i), the plastic plateau yk-1

(i) and the external loads Fk
(i) to be 

applied in the next step are known. 

2. Prediction.  The geometry is updated so as to reduce the section height to the 
estimated compressed part: hk

(i)= xk-1
(i).  The external loads Fk

(i) are applied to the 
updated geometry for which the linear elastic response is computed; in particular the 
strain and displacement states are calculated. 

3. Correction.  On the basis of the strain and displacement states of each section, the 
compressed part xk

(i), the plastic plateau yk
(i) and the unbalanced part of the internal 

forces ∆Nk
EP-(i) and ∆Mk

EP-(i) are computed via eq.s (3); it is worthwhile noting that the 
unbalanced forces are computed as a function of the current strain state only.  Assuming 
∆Nk

EP-(i) and ∆Mk
EP-(i) as the external fictitious forces representing the plastic response of 



the material to be applied on every section in addition to the external loads, the loads are 
updated: Fk+1 = F0 + ∆Fk, where ∆Fk stands for a vector containing the whole of the 
fictitious forces. 

4. The starting step is given by the elastic response to the external loads of the structure 
in its full geometry. 

In the generic case of a redundant structure, the internal forces to be equilibrated are not 
known, like in the problem of a straight lintel, so that the convergence criterion cannot 
be referred to the unbalanced part of the external loads but is rather referred to the 
variation of the plastic fictitious forces between two subsequent steps: 
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where the subscript i stands for the generic mortar joint, and ε is the accepted tolerance. 

The procedure can be implemented by external programming of commercial F.E. codes 
since it is based on a series of elastic analysis of structures differing only because of an 
updating geometry and varying external fictitious forces.  In particular, cfr. Fig. 1, an 
arch-type structure can be divided in finite beam-type elements in such a way that each 
element can represent a single arch block or brick.  In this way: 
1. the average axial thrust and bending moment in every element can be computed by 
averaging the nodal forces; 
2. the strain and displacement states in the joints can be deduced from the averaged 
forces by means of the classical elastic beam theory, 
3. the proposed procedure can be implemented by standard external programming of the 
F.E. code. 
Since the proposed procedure can be regarded as a constitutive model for masonry rather 
than a mechanical model for mortar joints only, the finite elements discretizing the arch 
structure do not need to preserve the voussoir’s dimension.  They can represent an 
assemblage of bricks introducing the approximation that the elasto-plastic response is 
not allowed in every joint but, say, every n joints. 
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Fig. 5.  Flat arch geometry.  The shaded area represents the fill. 

 



Table 1.  Geometric and mechanical properties of the bridge 

Property Value Property Value 

Span (intrados) s [cm] 1500 Width (unity) [cm] 100 

Rise (intrados) r [cm] 375 Rise to Span ratio  r/s 1/4 

Ring thickness d [cm] 75 Ring thickness to Span ratio  d/s 1/20 

Depth of fill in crown f [cm] 75 Fill in crown to Ring thickness ratio  f/d 1/1 

Pier height h [cm] 750 Pier height to Pier thickness ratio h/t 3.4 

Pier thickness t [cm] 220 Pier thickness to Ring thickness ratio  t/d 2.9 

Arch density [kN/m3] 22 Load distribution in the fill 40°+40° 
Fill density [kN/m3] 24.1 Loaded length knife type 

Masonry    
Young’s modulus [MPa] 15000 Masonry compressive strength [MPa] 5 / 10 / 15 / ∞ 

In the following, the procedure is applied to a single arch in which the discretization 
allows the crack to open every two joints and is developed using the ANSYS 5.6 F.E. 
code.  The geometry of the arch, shown in Fig. 5 and summarized in Table 1, and was 
chosen so as to represent a typical flat arch extrapolating the geometry of the scale 
models tested by Melbourne and Wagstaff (1995). 

The procedure had been applied to the arch considering different positions for the load, 
located at 0.1, 0.2, 0.3, 0.4 and 0.5 times the intrados span from the abutment, and 
assuming for masonry, first, the Castigliano’s model for which no limit to compressive 
stresses is set (No Tensile Resistant model), than assuming a limit compressive stress of 
15, 10 and 5 MPa.  The fill has been considered having two different effects: 1) a dead 
load on the arch; 2) distributing (40°) the applied load in a limited area of the barrel.  

In Fig. 6 the deformed shape at collapse is shown for two loading positions, giving 
evidence to the extension and position of the plastic hinges.  The collapse mechanism 
and hinge geometry is quite similar for all the arch models almost independently on the 
material compressive strength, so that the deformed shape of Fig. 6 can be assumed as 
representative of all the models. 

Fig.s 7 and 8 represent the load-displacement response of the arch (the displacement is 
referred to the point just below the loading line).  It can be clearly seen, Fig. 7, that the 
response is quasi independent on the masonry compressive strength when the load is 
nearby 1/4 of the arch span: in this case the collapse is the result of a collapse 
mechanism which activates at relatively low stress levels in the arch.  When the load is 
located on the center line, the line of thrust tends to move outwards the arch at the very 
end of the loading process when compressive stresses are quite high: in this case the 
elasto-plastic response of masonry, i.e. of the mortar joints, is of great effect on the 
collapse load. 
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a) collapse mechanism with effective height b) plastic hinges distribution 

Fig. 6. a) collapse mechanism; b) plastic hinges– yellow areas are the open part of the joints. 
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Fig. 7. Load-displacement response of the arch for load located at x/s = 0.3. 
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Fig. 8. Load-displacement response of the arch for central loading. 

Fig. 9 plots the limit load of the four different models of the arch as a function of the 
load position.  The most challenging position is located nearby 1/4 of the arch span, but 
specific numerical values account for x=0.3s as the position for which the arch exhibits 
the lowest limit load.  For the considered geometry, the elasto-plastic response of the 
material turns out to have relevant effects on the limit load only for loads located nearby 
the center line. 



40
0

65
0

90
0

11
50

14
00

16
50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Loading position x /s
L

im
it

 lo
ad

 [
kN

]

No Tensile Resistant

Elasto-Plastic (sigmac=15 MPa)

Elasto-Plastic (sigmac=10 MPa)

Elasto-Plastic (sigmac=5 MPa)

 
Fig. 9. Limit load of the arch vs. loading position and masonry strength. 
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Fig. 10.  Twin arch bridge geometry.  The shaded area represents the fill. 

 
 

MULTI-SPAN  ARCH  BRIDGES  ELASTO-PLASTIC  RESPONSE 
 

Fig.s 10 and 11 show the geometry of the considered twin- and three-span arch bridges 
which resemble that of the scale models tested by Melbourne and Wagstaff (1995) but 
for the ring thickness, which has been reduced to a more typical value. 
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Fig. 11.  Three-span arch bridge geometry.  The shaded area represents the fill. 

The same four different models for the single span arch (Castigliano’s model, named No 
Tensile Resistant, models with compressive strength of 15, 10 and 5 MPa) have been 
developed for these two bridges, loading the arches up to collapse in different positions 
governed by the distance x from the abutment (see Fig.s 10 and 11).  Fig.s 12 and 13 
represent the collapse mechanisms for loading along the center line and at x = 0.3s, the 
same as for Fig. 6, pointing out the hinge geometry and location. 
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a) collapse mechanism with effective height b) plastic hinges distribution 

Fig. 12. a) collapse mechanism; b) plastic hinges – yellow areas are the open part of the joints. 
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a) collapse mechanism with effective height b) plastic hinges distribution 

Fig. 13. a) collapse mechanism; b) plastic hinges– yellow areas are the open parts of the joints. 

Collapse mechanism involves 7 hinges for the twin arch model and 9 hinges for the 
three-arch one.  The first results are coherent with Hughes (1995) on this kind of 
structures; the three-arch model response, instead, points out that the collapse 
mechanism involves all the three arches, as already conjectured by Melbourne and 
Wagstaff (1995) on the grounds of their experimental work.  In particular, from the 
deformed shape of Fig. 13 it can be seen that, whatever the load position, the lateral 
arches are lifted upwards by the central arch, so that further applied load on the adjacent 
spans is likely to have stabilizing effects, as experimentally found by Melbourne and 



Wagstaff (1995). 

Plastic hinges with compressive stresses at the maximum threshold are found to activate 
at the last part of the load process.  Their extension in space, involving quite large parts 
of the arch to develop, is a consequence of the mechanical model assumed of the mortar 
joint.  The numbers near the plastic hinges refer to the progression of their formation. 
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Fig. 14. Limit load of the twin-arch bridge vs. loading position and masonry strength. 

Fig. 14 represents the limit load as a function of the load position and of the 
compressive strength for masonry.  In the most dangerous positions, somewhere in-
between 0.25≤x/s≤0.75, the Castigliano’s model (NTR) accounts for a limit load that is 
15% to 20% for the twin arch model and 15% to 30% for the three-span bridge higher 
than the values predicted by the weakest, but realistic, elasto-plastic model. 
 
 

DISCUSSION 
 

The effect of the arch ends compliances can be deduced from Fig. 15 where the limit 
load for the single-arch, twin- and three-arch models are plotted against the load 
position.  The difference between the single-arch prevision and the calculated limit load 
for the real structure is sometimes dramatic: the single arch analysis always 
overestimates the bridge limit load, sometimes it foresees a limit load twice or more the 
real collapse load.  The effect of material strength and of the number of spans is 
summarized in Table 2. 
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(a) - NTR Single-arch model Twin-arch model Three-arch model  (b) – σc=5MPa 

Fig. 15. Limit loads for the single-, twin- and three-span models vs. loading position for masonry) 
with a) unlimited compressive strength (NTR model); b) compressive strength of 5 MPa. 

The effect of abutment compliance on the limit load had been studied by Falconer 
(1994) referring to a three-arch multi-span bridge and Hughes (1995) analyzing a twin-
arch multi-span model.  Falconer gives a reduction factor to account for abutment 
compliance as a function of the pier height-to-thickness ratio, while Hughes suggests  a 
reductive factor that depends on all the relevant geometric factors of the bridge; for the 
specific values of the studied geometry, the two approaches foresee an overestimation of 
the single-arch analysis vs. the real limit load of 35% for the first estimate and 2% 
(knife type load) and 12% (for a 0.6m wide load footing); the classical MEXE (1968) 
method would suggest an overestimation of the single-arch analysis of 0% to 25%. 

Table 2.  Single-arch vs. multi-span analysis 

NTR x/s= 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

1-arch /2-arch 0% +15% +62.5% →∞ +30% 0% 0% 

1-arch /3-arch +14% +41% +95% →∞ +95% +41% +14% 

σc=5MPa x/s= 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

1-arch /2-arch +5% +29% +70% →∞ +40% ≈0% 0% 

1-arch /3-arch +26% +50% +100% →∞ +100% +50% +26% 

The difference between the different estimates is quite unusual since Hughes’ approach 
usually estimates reduction factors significantly higher than Falconer’s one.  In this 
specific geometry, the limit load for the isolated arch with perfectly built-in ends for 
central or near-central loading is quite high because the line of thrust hardly exits the 
arch thickness.  A higher ring thickness, say 1 m, would lead to infinite collapse load for 
an NTR model because would allow two compressed spars to form inside the ring 
thickness and to directly support the external load, Fig. 16.  In this case no reductive 
factor can be applied to the single-arch analysis and this is probably why estimates by 
Falconer, Hughes and the MEXE method are quite unreliable. 
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Fig. 16.  Resistant mechanism in a thick flat arch. 

 
 

CONCLUSION 
 

In this paper an iterative procedure for the elasto-plastic analysis of masonry arch 
structures has been discussed.  The procedure proved to be efficient since it can be 
developed by simple external programming of commercial F.E. codes; besides, it allows 
the use of more sophisticated stress-strain relations in compression than the perfectly 
elasto-plastic model used in this work. 

The comparison of the estimated collapse loads for single, twin and three-arch multi-
span bridges showed that in some circumstances the classical single-arch approach 
dramatically overestimates the actual limit load.  This happens when 1) the load is 
nearby the center of the span; 2) the material is poor with low compressive strength; 3) 
the ring thickness is high enough, in the single arch analysis, to make it possible for the 
thrust line to be straight and, nevertheless, entirely contained inside the arch thickness. 

The analyses carried out on multi-span bridge models show that the estimates of the 
limit load for multiple arch bridges found in literature (BS 21/92, BA 16/93, 1993, 
Falconer, 1994, Hughes, 1995) seem to underestimate the effect of abutment 
compliance. 
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