
 
 
 

CRITICAL AXIAL LOADS FOR TRANSVERSELY  
LOADED MASONRY WALLS 

 
A. E. Schultz1 and N. J. Ojard2 and H. K. Stolarski3 

 
 

Abstract 
 
The buckling behavior of unreinforced masonry (URM) walls subjected to out-of-plane 
lateral loads is described including numerical solutions for critical axial load capacity.  The 
influence of bending on buckling strength is illustrated, and the strongly nonlinear interaction 
between critical load and out-of-plane bending is discussed.  An experimental investigation 
and preliminary results on the stability of slender masonry walls are outlined, including 
combined lateral load-axial compression tests of URM specimens. 
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INTRODUCTION 
 
Bending arising from out-of-plane lateral loads has a dramatic impact on the stability of 
URM walls (Fig. 1).  Flexural tension stresses crack masonry and reduce the effective 
cross-section depth.  This effect augments lateral deflection due to out-of-plane bending 
and gives rise to second-order (P-∆) moments.  The additional bending generates more 
tension, which further reduces the cross-section, and can lead to instability (i.e. buckling). 
 
Out-of-plane bending due to axial load eccentricity has been recognized to affect the 
stability of URM compression members (Angervo 1954, Sahlin 1961, Yokel 1971, 
Colville 1979).  Previous research led to the development of design provisions that 
include eccentricity in the buckling capacity of URM walls.  In the U.S., a check on the 
buckling strength of URM walls including the effects of axial load eccentricity is 
required (MSJC 1999).  However, current code provisions do not address the effect of 
bending from out-of-plane loading on the stability of URM compression members. 
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Fig. 1 Influence of lateral load on buckling of URM walls 

 
Widespread problems in the performance of URM walls have not materialized in the U.S. 
in part because the existing URM building stock was designed according to older codes 
that are overly conservative.  Yet, severe lateral loading events such as earthquakes, 
hurricanes and tornadoes often generate out-of-plane collapses of URM walls, and these 
failures are usually attributed to low tensile strength without proper attention given to 
stability concerns.  However, new masonry construction often features members that are 
more slender and more highly stressed than those in older buildings, making stability 
concerns more important.  And, these trends come at a time when design standards 
(Minimum 1998) and model codes (NEHRP 1998) have adopted significant increases in 
wind and seismic loads. 
 
Previous Research 
 
Linear analysis techniques have been used to solve the governing equation for the lateral 
deflection of URM walls under eccentric axial load (Angervo 1954, Sahlin 1961).  In 



these studies, computed deflections, as a function of axial load, were used to define 
critical loads.  Solutions for the eccentric buckling strength of URM compression 
members have been developed in the U.S. (Yokel 1971, Colville 1979).  Yokel  
illustrated the accuracy of this approach for prediction of the buckling strength of 
eccentrically loaded walls tested over a wide range of variables (1971).   
 
The impact of masonry stress-strain nonlinearity on the buckling capacity of laterally-
loaded URM walls has been studied recently (Romano 1993, La Mendola 1995, 
Ganduscio 1997).  These researchers obtained analytical solutions for critical axial load 
which require iterative solutions of coupled, nonlinear equations.  However, these 
solutions have not found their way to design practice due to their complexity.  Sahlin 
(1961) had earlier considered the influence of out-of-plane bending on the buckling 
capacity of solid walls, but practical buckling solutions were not developed.    
 
Influence of Bending on Critical Axial Loads 
 
Yokel’s formulation for the deflection of a linear, elastic URM wall, with solid cross-
section and no tensile strength has been extended to include out-of-plane bending 
(Schultz et al. 2000).  An additional flexural eccentricity ef was defined as the ratio of 
bending moment M to axial load P (Fig. 1).  Differential equations were derived for 
moment distributions arising from four combinations of support conditions and lateral 
load, including 1) equal end-moments on a simply-supported wall, 2) uniformly 
distributed lateral load on a simply-supported wall, 3) concentrated lateral load on top of 
a cantilever wall, and 4) uniformly-distributed lateral load on a cantilever wall. 
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Fig. 2  Stability curves for simply-supported, uniformly loaded wall 

 
Numerical solutions were obtained for the lateral displacement u of URM compression 
members under axial load (Fig. 1).  These solutions describe load-displacement 
relationships like that shown in Fig. 2 for a simply-supported wall with a uniform load 



wu, and out-of-plane moment, as indicated by the parameter β, is seen to have a large 
influence on load-deflection behavior.  Relative maxima represent points of impending 
instability, and the corresponding critical axial loads are the buckling strengths Pc.    

 
For each of the four load cases considered, the ratios of critical load Pc to the equivalent 
critical load Pec were correlated with the bending parameter β (Fig. 3), and a third-order 
polynomial with respect to β was fitted through this data.  The numerical solutions, 
shown as discrete points in Fig. 3, are seen to be approximated closely by the 
polynomials, shown as solid lines. 
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Fig. 3  Influence of bending on buckling capacity of URM walls 

 
Schultz et al. (2000) used the numerical solutions to define the following buckling 
strength formula on the basis of the MSJC equation for eccentric axial loading (1999) 
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where he is the effective height kh of an equivalent simply-supported member, and the 
axial load eccentricity has been replaced by the sum of axial load eccentricity ea and part 
of the flexural eccentricity ef.  With values for the constant λ equal to 1.0, 0.905, 0.813, 
and 0.70, respectively, for Cases 1, 2, 3, and 4, Eq. [1] was found to provide good 
approximations of the computed buckling strengths.  
 
Bending Moment and Axial Load Interaction 
 
The solutions defined above describe a highly nonlinear interaction between critical axial 
load Pc and bending moment Mmax, and are illustrated in Fig. 4 for the load cases 
considered.  Critical axial load and moment are normalized with respect to Euler buckling 



load PE and radius of gyration r.  It is noted that for a given moment, there are two values 
of axial load that produce axial compression instability.  One of these is in a branch 
designated as the “tension” region (Pc/PE < 0.4), for which increases in axial load reduce 
flexural tension without a comparable increase in P-∆ instability.  The other load is in the 
remaining branch designated as the “compression” region (Pc/PE > 0.4), for which the 
reduction in flexural tension does not offset the increased P-∆ instability.   
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Fig. 4  Moment-buckling load interaction for URM walls 

 
Solution of Eq. [1] for routine design can be cumbersome as it is a fifth-order 
polynomial.  Two different values for axial load satisfy the interaction for a given 
bending moment, and there is a peak moment for given wall dimensions and material 
properties beyond which there is no real solution.  Rewriting Eq. [1] to solve for 
maximum moment Mmax as function of critical load Pc  
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is computationally more expedient than solving Eq. [1]. 
 
EXPERIMENTAL PROGRAM 
 
Using the solution for Case 2, the buckling strength of simply-supported, vertically-
spanning masonry walls subjected to uniform lateral loads was investigated over a wide 
range of variables (Schultz and Mueffelman, 2001).  Uniform lateral loads at buckling 
were compared with lateral load capacities for other design criteria including combined 
axial and flexural compression, flexural tension and out-of-plane horizontal shear.  For 
most parametric combinations considered, the lateral load capacities for buckling were 



smaller than those for all other criteria, suggesting that axial compression instability in 
the presence of transverse loading is the failure mode most likely to control the design of 
URM walls.  These analytical results underscore the need for experimental verification of 
the axial load instability of slender URM walls subjected to transverse loading. 
 
Yokel (1971) verified his buckling strength formula with data from eccentric axial load 
tests conducted in the U.S. during the 1960’s, and Romano (1993) refers to more recent 
eccentric axial load tests conducted in Germany.  However, these investigations did not 
include lateral loads.  Consequently, an experimental program on transversely-loaded 
slender members is underway at the University of Minnesota to determine the potential 
for buckling instability in URM walls. 
 
The current research program at the University of Minnesota includes eight unreinforced 
masonry wall specimens organized in two series.  Experimental variables include type of 
masonry (concrete block or clay brick) as well as the magnitudes of axial and lateral 
loads. The first series comprises four solid clay brick walls, while the second includes 
four concrete block specimens.  Both had fully-bedded mortar joints, and were made 
using type S Portland cement-lime mortar.  Masonry compressive strengths at 28 days for 
the clay brick and concrete block masonry were 37.9 MPa (5500 psi) and 13.8 MPa 
(2000 psi), respectively. 
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Fig. 5  Test setup for stability tests of URM walls 

 
This experimental program was designed around the test setup shown in Fig. 5 featuring 
masonry wall panels that are 3.38 m (11 ft 1 in.) tall, 0.80 m (31 5/8 in.) wide and 92-mm 



thick (3 5/8 in.) units.  The masonry panels were supported top and bottom by steel beam 
sections that were attached to pins, the bottom of which were bolted to the laboratory 
floor.  The top pins were the swivel-ended fixtures of two 490 kN (110 kip) force 
actuators which supplied the axial loading.  A single 155-kN (35 kip) horizontal actuator 
attached to a braced steel column served to provide the horizontal load by means of a 
whiffletree arrangement comprising threaded steel rods and spreader beams.  The 
whiffletree loaded the masonry panels at four locations along a vertical plane, as shown 
in Fig. 2, and it produced a lateral moment distribution that simulates closely the moment 
diagram for uniform lateral pressure.  The total height of the specimens between pins was 
4.395 m (14 ft 5 in.) and included the steel beams and a portion of the pin fixtures.  
However, these non-masonry portions of the total pin-to-pin height h were subjected to 
very small moments, so their influence on behavior was negligible. 
 
At the time this document was written, three of the clay brick walls had been tested.  The 
tests were initiated by applying a pre-selected amount of axial loading to the specimens 
by means of the vertical actuators, and these loads were subsequently maintained 
constant.  Walls 1, 2 and 3, respectively, sustained axial loads of 111 kN (25 kips), 222 
kN (50 kips) and 312 kN (70 kips).  The lateral actuator was operated in displacement 
control, and lateral displacement was incremented slowly until the wall specimens lost all 
capacity to resist lateral loading.  Thus, during the tests, the specimens also resisted 
second-order (P-∆) moments generated by the lateral deflection of the masonry.   The 
loading and the specimen response to loading were measured using internal load cells in 
the actuators, strain gages on the whiffletree rods, and LVDTs at various locations.   
 
TEST RESULTS 
 
The specimens responded to the lateral loading in a controlled manner until the wall 
cracked.  Single horizontal cracks formed near the center of the wall, and the crack 
widths increased with subsequent loading.  Beyond that point, lateral displacement grew 
quickly and resistance to the lateral load decreased rapidly.  The specimens were not 
allowed to fail in a sudden manner because lateral displacements rather than lateral loads 
were incremented during the tests, i.e. horizontal actuator displacements were controlled 
instead of actuator loads.  By the end of the tests, even though lateral load capacity of the 
specimens had been exhausted, second-order (P-∆) moments were quite large.  Plots of 
the lateral load vs. lateral displacement behavior of the specimens are given in Fig. 6. 
 
By the time Wall 3 was tested, a problem regarding the test setup was discovered.  A 
finite amount of flexural restraint was being imposed by the top and bottom pins of the 
setup.  Thus, Walls 1, 2, and 3 were not tested in a simply-supported configuration, but 
rather one with flexural restraints at the ends.  The lateral displacement profiles for the 
specimens were used to construct curvature functions, and these functions were searched 
to identify points of inflection for the specimens.  The corresponding locations are 
reported in Fig. 7 for Walls 2 and 3, but this procedure could not be used for Wall 1 
because there were insufficient LVDTs to generate reliable curvature functions.  The 
locations of the points of inflection also served to define the effective height he of the 
specimens, and these are also plotted in Fig. 7.   
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Fig. 6  Lateral load-deflection behavior of brick test walls   

 
The effective heights reported in Fig. 7 are very similar for Walls 2 and 3.  By the time 
the specimens cracked and lost stiffness, bending moment had also peaked, and these 
instances were taken as the stability limits for the specimens.  These occurred at 
displacements that were roughly equal to 1/3 of the total lateral displacement for Walls 2 
and 3.  The ratio of effective height he to total height h defines effective length factors k = 
0.75 for Walls 2 and 3.  Because no such determination could be made for Wall 1, and 
since effective heights were so similar for Walls 2 and 3, k = 0.75 was also assumed for 
Wall 1 at the stability limit.  Thus, Walls 1, 2 and 3 were much less slender than planned. 
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Fig. 7  Points of inflection and effective heights during brick wall tests 



Verification of Stability Limits 
 
A bending moment-axial load interaction diagram was constructed using Eq. [2] for an 
effective height he = kh = 0.75(4.395 m) = 3.30 m (10 ft 10 in.).  The digram is shown in 
Fig. 8 after normalizing by the Euler buckling load PE and the radius of gyration r.  Data 
from the tests of Walls 1, 2 and 3 are also indicated.  Walls 1 and 3 are seen to 
approximate the elastic interaction reasonably well, but Wall 2 displayed less bending 
strength than would be expected from the elastic interaction.  This variability can be 
attributed, in part, to the general variability of masonry material properties.  Nonetheless, 
the tests data is strongly supportive of the stability limits defined by Eq. [1] and [2]. 
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Fig. 8  Verification of moment-axial load interaction for brick walls 
 

The issue of nonlinearity often arises in relation to the stability of URM compression 
members.  Ganduscio (1993) and Romano (1997) reported the buckling solution for a 
cantilever masonry wall with a concentrated lateral load at the top (i.e., Case 3).  They 
used a nonlinear, exponential stress-strain relation for masonry in compression and noted 
a marked effect on critical axial loads with increasing degree of nonlinearity.  In the U.S., 
the elastic modulus of masonry Em is defined as the slope of a line that is secant to the 
stress-strain curve for masonry in compression at stresses equal to 0.0.05f´m and 0.33f´m, 
and it incorporates a significant portion of the nonlinearity inherent in masonry behavior.  
Using Em defined in this manner, Schultz et al. (2000) demonstrated that the elastic 
solution represented by Eq. [1] provides a conservative approximation of the nonlinear 
solution for slender and moderately slender walls (h/r > 35).  Furthermore, the elastic 
solution was found to overestimate the nonlinear solution for stocky walls in a 
substantive manner only when there was little bending (i.e., small β). 
 
As of the writing of this document, the test setup is being modified by replacing the top 
and bottom pins with commercial bearings so as to reduce the flexural restraint at the 
ends of the wall specimens.  Subsequent tests will be conducted with the modified setup. 



CONCLUSIONS 
 
Numerical solutions to the differential equations for flexure of URM members 
demonstrate 1) deleterious effects on buckling strength with out-of-plane bending, and 2) 
nonlinear interaction between moment and axial load.  However, due to the complexity of 
this interaction, moment capacity is more expediently defined as a function of axial load 
at incipient instability rather than the opposite.  Nonetheless, the calculations in this and 
previous studies suggest an urgent need for an experimental investigation of the stability 
of slender URM walls with transverse loading.   
 
The first three URM specimen tests in a program of 8 walls have been completed.  The 
specimens were tested in a setup that includes constant axial load and monotonically 
increasing lateral displacement.  Under the lateral loading, the wall specimens developed 
a single crack near mid-height and deflected laterally until all load capacity was 
exhausted.  Problems with the pins in the test setup led to unwanted flexural restraint at 
the ends of Walls 1, 2 and 3, but specimen displacement data was used to calculate the 
effective length he at the stability limit.  The test data strongly suggests the existence of a 
stability interaction between out-of-plane bending moment and axial load.  The test setup 
is being modified to eliminate the flexural restraint at the ends of the walls, and the 
remaining 5 specimens will be tested in the new setup. 
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Notations 

 
b Section width 
Em Modulus of elasticity of masonry 
e Eccentricity of axial load 
ea Actual eccentricity of axial load at end of member 
ef Effective flexural eccentricity 
f’m Masonry compression strength 
h Member height 
he Effective height of equivalent pin-supported member 
I Moment of inertia of member cross-section about weak axis 
k Effective height factor 
M Bending moment due to out-of-plane lateral load 
MmaxMaximum bending moment due to out-of-plane lateral load 
P External axial load 
PE Euler buckling load 
Pec Equivalent critical load based on cracked section depth 
Pc Critical (buckling) load 
r Radius of gyration for member cross-section about weak axis 
t Member thickness 
u Lateral deflection of compression face relative to line of action of axial load 
uo Maximum lateral deflection of compression face  
u1 Lateral deflection of compression face at member end 
w Lateral load intensity 
wu Factored lateral load intensity (at ultimate) 
y Position along wall height 
ß Bending parameter (Mmax/Pu1) 
D Lateral deflection relative to undeformed configuration  
λ Constant for approximate critical load formula  
σo Maximum vertical compression stress in masonry  


