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ABSTRACT

Steel and reinforced concrete frame buildings often incorporate masonry wall panel infills
within the frame. Studies conducted in the past have provided ample evidence of the
beneficial contribution of these panels to the stiffness and strength of the overall system.
However, as they exist today, these panels are used primarily as partitions to separate spaces
within the building or as cladding to complete the building envelope. Very little attention is
given to the structural usefulness of these panels. This is partly due to a lack of design tools
and the lack of a universally acceptable theory for the analysis and design of these systems.
Design aids for masonry infilled steel or reinforced concrete frame systems are generally not
available. This paper presents an analytical technique that may overcome the above
shortcoming. In the proposed technique, a general three-dimensional multi-storey, multi-
bay building is analysed as an equivalent braced frame structure whereby the infills are
replaced by a pair of diagonal springs. The stiffness and strength characteristics of the
diagonal springs may be obtained by tests or derived analytically using a more elaborate
finite element method. Also included in this paper is the description of a finite element
technique for the analysis of masonry infilled panels developed specifically for this study.
The correctness of this analytical technique is evaluated by comparison of analytical
predictions with available test results reported in the literature.
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INTRODUCTION

Despite the amount of informatjon available, structural designers are still reluctant to
include infills in a frame structure as load resisting elements. The work presented hcrein
describes a general analytical procedure for the analysis of frames with masonry infills. The
analytical model accounts for elastic - plastic behaviour of framc members and non-linear
behaviour of infills. To enable an economical and reasonably accurate analysis of large
infilled frame structures, simple beam elements are used to model frame members and
infills are modelled using equivalent springs. All frame members are assumed to be
perfectly elastic up to the load level where plastic hinges start to develop and remain plastic
thereafter. The stiffnesses and strengths of diagonal springs used to model the infills are
based on load-deformation curves of diagonally loaded infills confined within frames of
similar dimensions and stiffnesses. These load - deformation curves may be obtained from
actual test results or they may be generated using a more elaborate finite element analysis.
The use of a simple diagonal spring with a load - deformation behaviour that accounts for
interaction of frame and infill allows a large, practical structure to be analysed using
computing facilities normally available in a typical consulting office. *While the program
described herein is calibrated using test results of plane frames with masonry infills, it is
aiso capable of analysing general three-dimensional infilied frame struciures.

ANALYTICAL MODEL FOR THE EVALUATION OF INFILLED FRAME
BEHAVIOUR

The generation of a load - deformation curve for an equivalent diagonal spring used to
replace an infill involves a suitable finite element technique which must consider: :

1. interaction between frame and infill, including the effects of initial lack of fit, gaps
between frame and infill, interface bond and friction, and separation and re-
contacting at the frame - to - infill interface; )

2. non-linear behaviour of infill resulting from the occurrence of cracks due to shear
and tension, and crushing of the infill material possibly under the condition of
biaxial compressive stress;

3. non-linear behaviour of surrounding frame members and the formation of plastic
hinges due to a critical combination of axial load, shear, and moment in the
member section.

Fig. 1 shows a model used to generate load - deformation curves that can
satisfactorily account for the behaviour of infill. As shown, a masonry panel in this study is
treated as a series of elastic blocks linked together by a system of springs. The elastic
blocks are assumed to be linearly elastic up to failure while the springs are introduced to
handle tensile and shear stress failure in mortar joints. Standard plane stress rectangular
elements having a homogeneous property which accounts for effects of unit geometry and
mortar joints were used to model the elastic blocks. As shown in Fig. 2, the aggregate of all
linkage elements at a location, identified as a joint element in this study, consists of four
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nodes with ten springs of zero physical dimensions. Springs 1 to 8 ensure that the nodes of
wall elements connected by the joint move in unison when load is applied. Arbitrarily high
values are assigned to the stiffnesses of these springs. When joint failure occurs in the form
of tensile or shear cracking along mortar joints, the stiffness of one or more springs is
reduced to zero to reflect the corresponding failure. Although not absolutely necessary,

Springs 9 and 10 are introduced and assigned a small nominal, non-zero value to avoid
numerical difficulty during analysis when the stiffnesses of other links are reduced to zero.

Standard plane frame line elements located along centrelines of members are used to model
beams and columns. A typical plane frame elernent has three degrees of freedom at each
node and has moment, shear and axial load capacity. The frame element is assumed to be
linearly elastic and all inelastic behaviour is assuted to be concentrated at nonlinear hinges
located at the ends of the member. Hinge elements as shown in Fig. 3 are introduced at the
ends of frame members to model non-linear behaviour as described above. Referring to
Fig. 3, k,, k, , and k, are stiffnesses of the normal, tangential, and rotational springs,
respectively. [Initially, these are assigned a large arbitrary value to ensure that the two
points connected by the hinge element deform in unison with no relative displacements or
rotation. When end forces of the frame member, to which a hinge element is attached,
reach their peak values, a small nominal value is assigned to k,, &, , or k, depending on
the type of failure. For example, if the plastic moment capacity of the frame member is
reached, k, is assigned a small value so that the hinge element allows the frame to rotate
with very little increase in load. A pair of equal but opposite moments is applied at the two
end nodes of the hinge element to account for the plastic moment sustained by the frame
member. A similar technique is used to account for shear and axial load failure by
reducing the stiffness &, and k,, respectively.

An interface element consisting of a pair of norrtial and tangential springs is used to model
the conditions of the frame - to - infill interface. th this study, the normal spring is assumed
to have infinite compressive capacity with a tensile capacity depending on the adhesive
bond between frame and infill. Crushing of the infill is handled by reducing the elastic
constants of plane stress elements used to model the elastic blocks. A high stiffness value
is assigned to the normal spring when the frame is in bearing contact with the infill. When
tension capacity is exceeded, separation occurs and the stiffnesses of both the normal and
tangential springs are reduced to zero to allow the frame and infill to move independently.
The strength of the tangential spring depends on the shear bond and friction that exist in the
interface and its stiffness is approximated incrementally as follows :

A

where k' is the stiffness of the shear spting to be used in the next iteration of
computation, p is the coefficient of friction of the joint, F! is the force in the normal

M

i+l _
k=

spring, and A} is the relative shear displacemient of nodes tied by the spring under
consideration.. This permits the wall to slip when the shear force in the interface exceeds
the shear capacity of the frame - to - panel interface. If the panel is in contact with the
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frame and the shear bond of the interface is not exceeded, a high stiffness value is assigned
to the tangential spring.

MATERIAL MODEL

Material models as described in this section are used to describe constitutive relationship
for frame and interface elements. The beams and columns of the frame are assumed to have
a tri-linear load deformation behaviour as shown in Fig. 4. In this figure, the ordinates can
be end moment, shear, axial tension, or compression while the abscissa is the
corresponding associated deformation, The masonry panel model used in the present study
is assumed to be homogeneous and linearly elastic up to failure. Additionally, the material
is assumed to be orthotropic in directions parallel and normal to bed joints. The assumption
of linear elastic behaviour is based on experimental evidence available in the literature
(Fattal and Cattaneo 1976; Drysdale and Ilamid 1979) which tcnds to confirm that
masonry behaves linearly almost up to failure. The failure criteria for masonry as proposed
by Lourengo (1996) is adopted in this study. The primary reason for this is that these
criteria can be readily adapted for other masonry materials and types of construction.
Generally, there is a wide regional variation in the geometry of masonry units,
manufacturing materials used, and construction techniques throughout the world. It is
hoped that the use of these failure criteria will make the analytical technique proposed
herein readily adaptable by others.

ANALYTICAL PROCEDURE

In the present study, it is desirable to obtain the entire range of load - deformation
behaviour of infilled frames loaded to ultimate failure. Generally, such curves would
include a rising and falling branch, and a plateau which indicates the plastic strength and
ductility of the structure, if any. This curve may also contain one or more intermediate load
drops associated with localized failures. To obtain the load - deformation curve of an
infilled frame system loaded to failure, successively increasing loads are applied at a pre-
selected node. At each load step, stresses in the structure are examined and checked for
failure using appropriate failure criteria. If failure is detected, the stiffness of the structure
is modified to reflect the change caused by the failure and the analysis is repeated until no
new failure is detected. At this stage, the load is in equilibrium and the deflection of the
structure recorded. An incremented load is then applied and the process repeated to obtain
the next pair of load - deflection coordinates. When the load reaches its peak value, a
further increase cannot be applied because the state of equilibrium cannot be reached at a
higher load level. In order to overcome this difficulty so that the descending portion of the
curve can be obtained, an augmented structure as shown in Fig. 5 is used. Fig. 6 gives a
graphic illustration of the iterating procedure for the augmented structure adopted herein.
In the first iteration, the stiffness matrix corresponding to the undeformed structure is used.
Stresses in the elements of the strycture are then computed and checked for failure. If
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required, the structural stiffness is re-evaluated reflecting any failure of elements and new
displacements and stresses are computed. This process is repeated until no further change
in structural stiffness is encountered. Graphically, this process is shown as progressing
from a to b and eventually to ¢ in Fig. 6. At poirit c, the structure is in equilibrium with the
externally applied load and the force on the infilled frame is then computed by taking the
difference between the total applied load, F, and the force in Spring A, labeled as P, in Fig.
5. The applied load may then be increased by a predetermined increment and the process
repeated.  Stiffness values computed in the preceding iteration is used to initiate the
computations for load step (i+1). Using this technique, the entire load - deflection curve
can be generated.

COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

Fig. 7 shows a comparison of a load - deforination curve generated using the above
procedure and a corresponding curve obtained experimentally for a concrete masonry
infilled steel frame specimen (Richardson 1986). A similar comparison of analytical and
experimental results for a reinforced concrete frame with clay brick infill is shown in Fig. 8.
Reasonable prediction of peak load and post peak behaviour are obtained in both cases.
Although Figures 7 and 8 show the load - defortnation curves of infilled frame specimens
under horizontal racking load, the technique described herein can also be used to generate
load - deformation curves of diagonally loaded infilled panels.

ANALYSIS OF GENERAL FRAMED STRUCTURES WITH MASONRY INFILLS

Fig. 9 shows a model that can be used for the analysis of a general three-dimensional
framed structure with masonry infills. Standard beam elements with six degrees of freedom
per node are used for frame members. Infills are replaced with equivalent diagonal springs
which are activated only-when the diagonals are in compression. Stiffnesses of the diagonal
springs are based on load - deformation curves of infills that can be obtained using
procedures described in the preceding section or determined experimentally. A typical
curve as shown in Fig. 10 is based on test results by Dukuze (1998) for a diagonally loaded
infill panel confined within a frame. Also shown in Fig. 10 is the corresponding curve
determined analytically using the technique presented in this paper. It is believed that the
curve accounts for the effects of infill-frame interaction and therefore the diagonal spring
can replace the infill in the analysis of a large multi-panel structure.

A computer program called EPIFRAME was developed for the analysis of general three-
dimensional framed structures with infills as described above. A combined incremental and
iterative technique similar to that described previously was adopted in this program. As
mentioned earlier, diagonal infill springs are activated only when in compression and their
stiffnesses and strengths are based on their load - deformation curves. The program checks
for bending forces in frame members at the end of each load increment and the stiffness
matrix of the structure is modified, if required, during the iterative computations.
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EXPERIMENTAL PROGRAM

ATLNINVIEIN L AL TRUGRAN

Racking tests on one-third scale three-bay, three-storey reinforced concrete frames with
brick masonry infills were conducted by Dukuze (1995, 1998). Fig. 11 shows the overall
dimensions of the test specimen and the total shear load distributed to the top, second, and

first storey levels in the ratio of /2 : /3 : % . A summary of the cross-sectional dimensions
of the frame members is shown in Table 1.

Comparison of predicted and experimental load deformation behaviour of two three-storey,
three-bay frame specimens tested by Dukuze (1998) are shown Figures 12 and 13. As
evident in Fig. 12, EPIFRAME correctly predicts the ultimate load of Specimen S331 (See
Tabie 1). However, the predicted initial stiffness is greater than that obtained
experimentally. The lower stiffness obtained experimentally can be partly attributed to the
fact that Specimen S331 was subjected to repeated ioading in initial attempis to test the
specimen (Dukuze 1995) and cracking had occurred in some panels prior to the final test.
EPIFRAME gives reasonable prediction of the initial stiffness and ultimate load of
Specimen S335. In both specimens, the load - deformation curves of equivalent diagonal
springs uscd to replace the infill were obtained analytically and are similar to that shown in
Fig. 10.

CONCLUSIONS

Comparisons between predicted and experimental data were made for reinforced concrete
frames with brick pancl infills and stecl frames with concrete masonry infills. Satisfactory
correlation between experimental results and analytical predictions were obtained. This
work was then extended to obtain the load-deformation behaviour of diagonally loaded
infill panels to provide information for the analysis of more general multi-storey, multi-bay
infilled frames. The computer program developed for this purpose accounts for the elastic -
plastic behaviour of frame members and non-linear load - deformation characteristics of the
infill. The infills in the computer model are replaced by non-linear diagonal springs while
standard beam elements are used for frame members. Findings indicate satisfactory
correlation between experimental results and predicted behaviour. Preliminary results
indicate that this technique is suited for the analysis of three-dimensional frames with
masonry infills.
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Table 1: Test Specimens: Three-Storey, Three-Bay Frame (Dukuze 1998)

Column Beam Infill dimensions Ultimate Load
W (mm) x H(mm) Predicted
Experimental
S331 ~10M Rar ' 10M Rar
: o T e 900 x 900 0.97
[ ' ‘ SN,
M= 5.4 kN-m M, = 5.4 kN-m
S335 )
/ |n)f Bar } "’NIM_ l::m
'__-»'A“‘» . - 100 “ !..i..:,

! .
10

900 x 900 0.92

o !

| 20 TYP

ALt
- = a1 TYP X N
e

M,= 5.4 kN-m M, =11.1 kN-m

Note: M, = Moment capacity based on CSA 23.3-94 (Canadian Standards Association 1994).
f. =20 MPa, f, = 400 MPa
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Lateral Deflection D1 (See Fig. 11)
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