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ABSTRACT

The capacities of slender concrete block walls under sustained eccentric axial loads were
investigated using the finite element method.The finite element model accounts for the
inelastic material responses, P-8 effects, and time-dependent (creep) strains. Creep functions
developed from test data for normal weight masonry prisms were used in the numerical
model. Loading and geometric parameters are included in the study. Sustained loads in the
range of service loads were kept constant for a period of 25 year after which a short term
loading was applied to the walls to investigate the residual wall capacities. Considerable
reductions in the short term capacities was found as a result of the long duration of the load.

INTRODUCTION

Back ground

Creep and other time dependent strains in the constituent materials of a symmetric
concentrically loaded unreinforced masonry wall do not change the capacity. This is because,
they cause only additional shortening of the wall without producing additional internal
stresses or stress redistributions. For reinforced masonry sections under concentric axial
loads, stress redistributions take place between the masonry material and the reinforcement,
usually resulting in higher capacities (Ben-Omran et al., 1989). Sections subjected to initial
out-of-plane bending resulting from eccentric axial load have nonuniform stress distributions
across the wall leading to corresponding variations in creep strains and increased curvature.
The added creep curvature results in additional wall deflection. For stocky members, creep
deflections are generally insignificant but, for slender members, the additional P-8 effect due
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to creep deflection may produce significant additional internal stresses due to the increased
moment. Therefore, the creep effect cannot be neglected in determining the capacities of
slender walls.

Shrinkage and thermal movements are other potential sources of wall deflections. However,
to the extent that these deformations are uniform across the wall section, which is the case
for shrinkage and constant surrounding temperature for unreinforced masonry walls, no
additional lateral deflections are produced.

Evaluation Criteria

Two approaches can be used to evaluate the effects of long term loading on capacities. In the
first approach, the magnitude of the sustained load under which the wall fails after a specified
period of time is determined. In this case, the level of sustained load must be defined and must
be greater than the service load to provide a margin of safety against failure. On the other
hand, it seem rational that the level of sustained load be less than the factored load because
the factored load is not expected to act for the lifetime of the structure.

In the second approach, the residual strength of the wall is determined after a specified period
of time under a specified level of sustained load. The sustained load can be taken equal to the
service load, similar to the case of defining the serviceability limit. Alternatively, where some
loads are unlikely to be sustained (i.e., 100% of live load, snow, or wind), some fraction of
the service load could be more appropriate. In this case, the factored load is considered as a
short term overloading and because sustained loading is to be expected, the member should
be able to carry this factored load and moment after the period of sustained load. Although
arguments can be made for walls to withstand some level of sustained overloading, the
approach chosen was to study the remaining capacity after some fraction of the service load
was sustained for a period of time. It is suggested that this is a more direct approach for
defining the long term failure load.

In the Canadian masonry code, CAN3-S304-M84, the effects of the creep on the long term
capacities of axially loaded slender members were accounted for in the reduced modulus of
rigidity used in the moment magnifier approach. The proposed limit states design code, CSA
S§304.1-94, uses the reduction factor (1+,) to reduce the modulus of rigidity where B, is the
ratio of the factored dead load moment to the factored total moment. This ratio was proposed
by MacGregor et al. (1970) for reinforced concrete based on the analytical work done by
Manuel and MacGregor (1967). The American Concrete Institute adopted this reduction
factor in ACI 318-89 and previous editions.

FINITE ELEMENT CREEP SIMULATION
Creep Functions
Test data for 4-block high normal weight masonry prisms (Maksoud 1994) loaded under

sustained axial load for almost 400 days were used to develop creep functions. The response
which include both the creep in the concrete blocks and the mortar joints is referred to as
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global creep whereas the creep of the concrete blocks only is referred to as micro creep. In
the finite element model (Maksoud et al., 1992), creep at the integration points which include
both block and mortar joints is based on the global creep response whereas the micro-creep
is used for integration points which include only blocks.

The following are the creep functions used in the finite element model.

1. Global creep response:

A 10.0008 () - 0.000434(2)
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2. Creep in the concrete block (micro creep):

2
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where A, is a modification factor to account for different creep responses for different
masonry compressive strengths. In the present study, Ay was taken equal to unity because of
the close material properties used in the short term analysis and tested prisms. o is the
sustained stress and £, is the compressive strength of the masonry. F is a logarithmic function
expressed as

F=-0.64 loglot+0.4 [3]

where t is the time in days under sustained load.

Creep Strain Versus Stress Relationship

One way of predicting the creep response under multiaxial states of stress using the creep data
from uniaxial test results is to use the principle of effective stress and effective strain along
with the strain flow rule in the same manner as in the theory of plasticity. The effective stress
is associated with a certain loading or yield function and the effective strain is either defined
using the assumption of incompressibility or the equivalent strain energy approach. For
simplicity, the creep response is assumed to be pressure independent (Anand et al., 1983 and
1991). Accordingly, Von Mises's yield surface (F(o;)) can be used to relate the multiaxial
stresses and the creep strains. Based on the definition of the Von Mises yield locus (F(o;) =
3,), the effective stress (o) can be defined as follows:

.5 3 .5
O - (37,)%% - (55,5,)° 141

where J, is the second deviatoric stress invariant and S; is the deviatoric stress tensor. Using
the incompressibility assumption for the creep strain (Bushnell (1977) , Bathe (1982) and
Anand et al. (1983) and (1991)), the effective creep strain can be expressed as:
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where e is the effective creep strain and e; is the creep strain tensor. Similar to the case of
dealing with plastic strain, Eqs. 6.11 and 6.12 along with the associated flow rule result in the
creep strain increment (Hill, 1950):

decreep . _:’i_d_f S_ij

6
dt 2dt © tel

where €, is the incremental creep strain vector and f'is the creep strain-time-stress function
(Egs. 1 to 3). It worth noting that, instead of using real time, the effective time must be used
in the creep function by substituting the effective creep strain (Eq. 5) and effective stress (Eq.
4) into the creep function. This is done to relate the elapsed time under the uniaxial stress
state, used to develop the creep function, to the elapsed time under the multiaxial state of
stress.

Creep Under a General Stress History

Most creep data and mathematical representations were obtained under conditions of constant
uniaxial stress over the full test period. Therefore, they usually do not include any provision
to rationally account for stress histories. Several methods have been developed to predict
creep strain under a general stress history. A comprehensive review of these methods can be
found in the book by Neville et al. (1983).

The rate of creep method developed by Glanville in 1930 to rationalize the prediction of the
creep under varying stresses (Neville et al., 1983) was used in the present study. This method
is based on the assumption of an equal creep rate regardless of the time of application of the
load. In other words, for a structure loaded at time t,, the rate of creep strain due to an
additional stress increment at time t depends on the rate of creep at that time which could be
very small if the structure was loaded at an old age. Accordingly, under increasing stress, such
amethod underestimates the creep strain. This technique was initially developed based on a
linear stress-creep strain relationship by utilizing the principle of specific creep (creep per unit
stress). However, using the equation-of-state approach (MacGregor (1967), Bushnell 1977)
and Bathe (1982)) which incorporates comprehensive creep functions, the concept of a
constant rate of creep was adopted in the inelastic stages at high stress levels. These functions
relate the creep strain with any level of stress in the same way as Eqgs. 1 and 2. The simplicity
of this technique, as opposed to the difficulties in assigning different parts of the creep
response to different creep components in the rate of flow method, and the large memory
required to store stress histories for every stress increment at every integration point in the
superposition method, is the reason for its use in the present numerical model.

Initial Strain Technique

One of the common approaches to simulate the creep effect, in finite element analyses, is to
consider the creep strain as an initial strain in the material which does not produce stress. The
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mathematical procedures for the initial strain approach are similar to the experimental
procedures which are followed during creep tests. In the initial strain method, the creep strain
increment, determined for a specific time increment, produces a stress drop (do) expressed
as follows:

do-D(de ) [71]

creep

where D is the elasticity matrix, assuming elastic behaviour during the creep unloading. The
change in the internal force corresponding to the decrease in stress is

dF-fv [B] do dv [8]

where [B] is the strain-displacement matrix and v is the volume of the specimen. To preserve
equilibrium with the external force, a new load increment is applied to compensate for the
change in force. This is similar to what happens in a creep test as the load is adjusted back to
its original magnitude. The strain and stress due to this load increment have to be added to
the values obtained before the current time increment, which is also equivalent to taking the
creep strain reading after adjusting the load.

PARAMETRIC STUDY

Parametric studies were conducted on normal weight slender unreinforced walls to determine
the residual wall strength after 25 years of sustained loading. This period was chosen because
it accounts for most of the creep deformation of masonry materials, similar to concrete
(Manuel and MacGregor, 1967). The three major parameters, namely the b/t, e/t and e /e,
ratios, were included in this investigation. The two levels of sustained load chosen were 20%
and 40% of the short term capacities (STC) obtained from a previous parametric study
(Maksoud et al., 1993).

Loading Sequence

The loading sequence consisted of short term loading which was applied incrementally to the
wall until the specified load was reached. As mentioned before, this load was chosen to be
20% and 40% of the short-term capacities (STC). Then the creep analysis was carried out for
a period of 25 years, divided into 18 time increments as shown in Table 1. After the period
of sustained load, additional short term loading was applied incrementally until failure was
identified.

Instead of repeating the numerical procedures, which includes the solution of the equilibrium
equation for small time increments, the subincremental technique was used. This allows for
determination of the rate of creep depending on the current elapsed time using longer time
increments. In the subincremental technique, the specified time increment (7 days for
example) is divided equally into subincrements after which the effective time is updated using
the current state of stresses and creep strains. Use of 15 subincrements was chosen to be

357 Maksoud, Drysdale



similar to that used in the plasticity model.

Table 1 Incremental Periods

Number Period Total
of (days) time (days)
increments

7 1 7

3 7 21

3 112 336

5 1752 8760
Total time 9124

Ranges of Parameters and Material Properties

Twenty eight walls were analyzed to investigate practical ranges of the chosen parameters.
The two extreme values of e/e, (1 and -1) were used to represent the cases of symmetric
single curvature and anti-symmetric double curvature, respectively. In Table 2, the wall height
0f3.6,4.8,6.0,7.2 and 84m (11.8,15.7,19.7, 23.6 and 27.6 ft) represent slenderness ratios
of Wt=18.9, 25.3, 31.6, 37.6, 37.9 and 442 for the actual block thickness of 190 mm (7.5 in).
For the analyses, the effective mortar bedded area and face shell thickness were based on an
average face shell thickness of 34.9 mm (1.55 in). The eccentricity of 20 mm (0.79 in)
represents the minimum eccentricity of 0.1 t whereas the 60 mm (2.36 in) value is close to the
upper limit of 0.33 t above which flexural tensile strength is a controlling design parameters.

Material properties correspond to masonry assemblage of moderate strength (Guo, 1990)
were used. Compressive strengths of 19 MPa (0.13psi), 20 MPa (0.14psi) and 13 MPa
(0.09psi) were assigned to masonry prism, standard concrete blocks, and mortar, respectively.
These values correspond to compression tests on 4-block high prism, 150 mm high coupon
cut from concrete block, and 50 mm high mortar cubes tested using brush end plates.
According to the test data (Guo, 1990), the initial moduli of elasticity of the concrete block
and mortar joint were taken as 20700 MPa (142.7 psi) and 10000 MPa (68.9 psi),
respectively. Poisson ratio of 0.19 was assigned to both blocks and mortar. Also, the
corresponding uniaxial stress-plastic strain curves were used in the plasticity model.

Discussion of Results

Figure 1 contains groups of normalized load-deflection curves for 3.6 and 4.8m high walls
subject to 60 mm load eccentricity of single curvature. Figures 2 (a) and (b) contain
normalized load-deflection curves for 6.0 m high walls under load eccentricity of 60 mm with
single and double curvatures. The predicted long term capacities of 28 walls are presented in
Table 2. The capacities were normalized by the compressive strength of 4-block high prisms
(590 kN (2478 Kips)) predicted by the finite element model and the mid-height deflections
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were normalized by the wall thickness (190 mm). The following points provide discussion and
interpretation of the above data:

1. For walls deflected in symmetric single curvature (e,/e,=1), the reduction in the capacities
varied according to the wall heights, (h/t ratios), the load eccentricities (e/t ratios), and the
level of sustained loading. In the case of 3.6 m high walls (h/t=18.95), the reductions in the
capacities were relatively insignificant ranging from 3% to 7% under different load
eccentricities. For the 4.8 m high walls (h/t=24), the reductions in the capacities increased
significantly when the level of sustained load increased from 20% to 40% of the short term
capacity (STC). In these cases, the reduction in the capacities increased from 6% to 17% in
the case of €/t=0.1 and from 10% to 20% in case of e/t=0.3. For the 6.0 m high walls, the
reduction was more significant when the level of sustained loading changed from 20 to 40%
of the short term capacity (STC). These reductions changed from 2% to 9% and from 10%
to 30% for e/t ratios of 0.1 and 0.3, respectively. As can be noted, the wall heights had
significant roles in intensifying the effect of the creep strains. This can be seen in Figs. 1 to
Fig. 3 where the creep deflections under sustained load of 40% of the short term capacities
and e/t=0.3 were almost two, three, and four times the creep deflections under sustained load
0f 20% of the short term capacities for 3.6m, 4.8m, and 6.0m high walls, respectively. These
ratios decreased slightly for e/t =0.1.

Table 2 Normalized' Long-Term Capacities of 190 mm Hollow Block Walls

Capacity for Sustained Loads Expressed as Ratio

e/e, Wall of the Short Term Capacity
ti height
ratio 25;] Eccentricity=20 mm Eccentricity=60 mm

0.00 | 020 | 040 | 0.00 | 020 | 040
3.6 0.70 | 0.68 064 | 050 | 048 | 047
4.8 0.63 0.59 052 | 043 039 | 0.34
6.0 0.53 052 | 048 034 | 031 | 024
438 0.81 079 | 079 | 0.63 0.60 | 0.57

6.0 0.69 | 0.66 0.69 | 0.60 0.57 | 0.57
7.2 0.63 0.63 0.63 0.55 052 | 0.52

8.4 0.56 0.56 0.53 0.51 0.51 0.49
+ Normalization by dividing by f',A, where f,=19 MPa (2775 psi)
Conversion 1 in=25.4 mm, 1 ft=0.305 m
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(b) 4.8 m High Walls
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Fig. 1 Short and Long Term Behaviour of 190 mm Hollow Block Walls Under

Symmetric Single Curvature and e=60 mm.
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(b) Anti-Symmetric Double Curvature (e,/e,=-1)

Fig. 2 Short and Long Term Behaviour of 6.0 m High and 190 mm Hollow Block
Walls with Eccentricity of 60 mm

2. Tt is quite clear from Table 2 that changing the deflection mode from symmetric single
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curvature (e,/e;=~1) to double curvature (e /e,=-1) had a remarkable effect on reducing the
creep effect in most situations. The average reduction in the capacities dropped to 3 and 5%
for e/t equal to 0.1 and 0.3, respectively under sustained loading of 40% of the short term
capacity. Therefore, it can be concluded that under the whole ranges of slenderness and
eccentricities/thickness ratios, the long term capacities are nearly the same as the short term
capacities for walls under e,/e,=-1. The minor effect of creep for the case of e;/e;=-1 can be
explained using Fig. 4 where it can be seen that the added creep deflections, even under e/t
=0.3, are only a few millimetres which did not produce significant secondary moments. The
same response was reported by MacGregor et al. (1970) regarding reinforced concrete
columns bent in double curvature.

3. Although the creep strains produced additional lateral deflections, some walls
subjected to double curvature had long-term capacities as high as the short term
capacities. In the case of the small eccentricity ratio (e/t=0.1), this response can be attributed
to the additional deflection due to the creep which enhanced the second buckling mode. This
may delay the transfer from the double curvature mode to the single curvature mode, resulting
in higher capacities. For the higher eccentricity ratio (e/t=0.3), the comparable capacities can
be attributed to the fact that critical sections are close to the wall ends near the locations of
the maximum primary moment where the P-5 is not significant. The same response in the case
of double curvature situations was reported by Manuel and MacGregor (1967) regarding
reinforced concrete columns.

PROPOSED EI REDUCTION FACTOR

Moment magnifier approach has been successfully used to account for secondary moments
in reinforced concrete as well as masonry members subject to axial loads and out-of-plane
bending. To account for inelastic material response, cracking, and creep effects, effective
modulus of rigidity EL; has to be developed to empirically fit the behaviour of the walls. The
finite element results for the long term loading were used for this purpose. According to the
moment magnification factor formula, the reduction factor R for the elastic uncracked
modulus 6f rigidity (EXjsc umerckea) €an be expressed as

EI ., h,, G B
- (2y2 &
I G-1 EI

R = T [9]

elastic uncracked elastic uncracked

where h is the wall height, G is the moment magnification factor, and B is the normalized wall
capacity (Table 2). Using the moment-thrust interaction diagram of a short wall, the moment
magnification factor G can be determined by dividing the moment capacity of the short wall
at peak load by the primary moment capacity. Using the long term wall capacities
corresponding to sustained loads of 40% of the short term capacities and neglecting the creep
effect in the case of antisymmetric curvature, a formula for the reduction factor R was
developed using stepwise regression and was expressed as
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R-0.2438 . 0.00472 =
r

N

[10]

with R-SQ equal to 87%, where R-SQ is equal to the sum of the squares of R values due to
regression divided by the sum of squares of R values predicted using finite element results
(Eq. 9). ris the radius of gyration of the cross section. As can be noted from Eq. 10, the EI
reduction factor R increases as e/r and h/r increase. Similar to the reduction factors developed
from short term loading (Maksoud et al., 1993), this response can be attributed to the inelastic
material responses associated with walls of low e/r and h/r ratios, where more reduction in
the elastic uncracked modulus of rigidity is needed for shorter walls with low h/r ratios.
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