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ABSTRACT 
Unreinforced masonry members have to resist vertical loads and bending moments about the 
weak axis due to rotation of adjacent slabs. If the compression member is part of the bracing 
system, additional bending moments about the strong axis exist. Thus, the compression member 
is loaded with a vertical normal force which is eccentric in two ways (out-of-plane and in-plane 
direction). If the slenderness of the compression member is small, the compression member will 
fail due to crushing. If the slenderness in one direction is high, the member will fail due to 
buckling. This research deals with the load carrying capacity of biaxially eccentrically 
compressed unreinforced masonry walls and columns with linear and non-linear material 
behaviour. For linear-elastic material, the principles of an analytical model, which considers the 
geometrical non-linearity and the effect of cracking, is presented. The deflections of the wall can 
be determined with the derivation of moment-curvature relationships. Thereby, the analytical 
analysis of compression members considering the effects of 2nd order theory is possible. For a 
non-linear stress-strain relationship and a limited flexural tensile strength, the evaluation of the 
load carrying capacity of rectangular cross sections under biaxial bending is complex and has to 
be performed numerically. In addition to the results of the analytical model, results of numeric 
calculations are also shown for various eccentricities in both directions. 

KEYWORDS: biaxial bending, buckling, moment-curvature-relation, non-linear, slender, 
unreinforced masonry 

INTRODUCTION 
Unreinforced masonry compression members like walls or columns have to carry normal 
compression forces and bending moments. Due to bending moments about the weak and strong 
axis, the compression members are loaded with a normal force which is eccentric in two 
directions (biaxial), see cross section in Figure 1 (left). The dimensions of the cross section are 
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described by the thickness t and the width b. The values ey and ez are the eccentricities of the 
normal force N in each direction. 

   

Figure 1: Stress distribution for the cracked cross section with biaxial eccentric normal 
force (left) and system of the compression member (right) [1] 

Due to different geometrical dimensions and different supporting conditions, a different buckling 
length in each direction exist (hef,y and hef,z). The general system with two different buckling 
lengths is shown in Figure 1 (right). 

To derive the load carrying capacity of short and slender compression members regarding the 
non-linear behavior of unreinforced concrete and masonry, an extensive analytical and numerical 
model is presented in [1]. This paper shows an excerpt of that study. 

BASICS 
In consequence of the low flexural tensile strength of masonry, the cross section can crack if one 
or both load eccentricities are too large. For cross sections with linear-elastic material without 
flexural tensile strength, there are five different possible shapes of the compressed area which 
lead to five possible cases (A to E; Figure 2) for the analysis. Depending on the eccentricities, 
the cross section may remain uncracked (A) or may be cracked (B to E). If the cross section is 
cracked, the compressed area will be pentagonal, foursquare or triangular. Therefore, it is always 
necessary to differentiate between the described cases. This applies to the load carrying capacity 
of the cross sections, the moment-curvature relationship and also to the load carrying capacity of 
the compression member. In the following, only the principles of the analytical model and the 
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load carrying capacity of uncracked compression members (A) are presented. The solutions for 
cases B to D are very complex. The full model is presented in [1]. 

 
Figure 2: Compressed areas for the different cases [1]  

Figure 3 shows the normal force and bending moments about each axis for the load effects and 
for the resistance of the cross section. For biaxial bending, the bending moment about one axis 
reduces the bending resistance about the other axis. According to 1st order theory, no additional 
deflections are considered and the bending moments are proportional to the eccentric normal 
forces. Considering 2nd order theory, the bending moments increase non-linearly and the bending 
moments depend on the slenderness of the compression member. For short compression 
members, 2nd order theory can be neglected, but for slender members, 2nd order theory has to be 
considered. 

 

Figure 3: Normal force and bending moments for the cross section and loads [1] 
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The equilibrium with the greatest normal force is the load carrying capacity of the system. If load 
effects reach the resistance of the cross section, the compression member will fail due to 
crushing because the load carrying capacity of the cross section is exploited completely. This 
may occur considering 1st order theory (point 1 in Figure 3) or considering 2nd order theory 
(point 2 in Figure 3). These two failure modes always exists. In case of a material without 
flexural tensile strength, the maximum load carrying capacity can also lay within the resistance 
curve of the cross-section (point 3 Figure 3). In this failure mode, the load carrying capacity of 
the system is based on the equilibrium at the greatest normal force. Hence, if the point for the 
load carrying capacity of the system lies within the curve of the cross-sectional resistance, 
buckling failure will appear. Biaxial bending buckling failure may also occur if the point for one 
direction is within the cross-sectional carrying capacity but cross-sectional carrying capacity for 
the other direction is reached. 

For a material without flexural tensile strength (|ft/fc| = 0.0) the different failure modes are shown 
in Figure 4 as a function of the slenderness. The quantity |ft/fc| is the ratio of flexural tensile 
strength ft to compressive strength fc. The horizontal axis represents the slenderness and the 
vertical axis the normalised resisting normal forces considering 2nd order theory, 
ΦR

II =NR
II / (b∙t∙fc). The curve of the load carrying capacity for materials without flexural tensile 

strength has an inflection point at the limit slenderness λlim. If the slenderness of the compression 
member is smaller than λlim, crushing failure will occur while if the slenderness is greater than 
λlim, buckling failure may occur.  

 

Figure 4: Load carrying capacity and different failure modes for materials without flexural 
tensile strength [1] 

LOAD CARRYING CAPACITY CONSIDERING 2ND ORDER THEORY 
A recognized method based on nominal curvature for concrete members which are eccentrically 
compressed in only one direction exists, see [2], [3], and [4]. This approach is also adopted in 
Eurocode 2 [5]. Considering 2nd order effects and shape of the curvature over the height of the 
compression member, the analysis can be reduced to the equilibrium of the critical cross section. 
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These principals were used in [6] to adopt this approach to unreinforced concrete and masonry 
walls which are loaded with unidirectional eccentric compressive forces. For linear-elastic 
materials, there is an analytical solution for crushing and stability failure considering 2nd order 
theory. As this approximation is only valid for the special case of unidirectional eccentric normal 
forces, the approach has to be extended to the general case of normal forces with biaxial bending. 
The principles of the derivation of the load carrying capacity are explained below. 

For the determination of the load carrying capacity of slender compression members, it is 
necessary to consider 2nd order theory. The bending moments about each axis (My

II and Mz
II) can 

be determined by the following equations: 

II I II
y y yM N e N e     (1) 

II I II
z z zM N e N e     (2) 

The exponent I stands for 1st order theory and II for 2nd order theory. The values ey
I and ez

I are 
the eccentricities of the normal force N and ∆ey

II and ∆ez
II are the deflections caused by the 

influence of 2nd order effects. These deflections can be calculated by the double integration of the 
curvature over the height of the compression member: 

 II II
y ze x dx dx     (3) 

 II II
z ye x dx dx     (4) 

The values κz
II(x) and κy

II(x) describe the curvature distribution over the height x about each 
axis. Assuming the shape of the curvature, Equations 3 and 4 can be simplified to: 

II 2 II
y y ef ,y ze C h (x 0)      (5) 

II 2 II
z z ef ,z ye C h (x 0)      (6) 

Cy and Cz are the constants of integration in each direction, hef,y and hef,z are the buckling lengths 
and κz

II(x = 0) and κy
II(x = 0) are the curvatures at the fixed support, see Figure 1 right. For 

sinusoidal curvature shapes, the constant of integration is 1/π² ≈ 0.101 and for parabolic shapes 
the constant is 5/48 ≈ 0.104. The approximation of the shape of the curvatures is the only 
approximation of the analytical model. For the design of reinforced concrete columns which are 
loaded eccentrically in one direction, Eurocode 2 uses 0.1 as the constant of integration [5].  

Based on equilibrium at the critical cross section (Eq. 1 and 2) and considering the defections 
(Eq. 5 and 6), the related moment-curvature relationship (shown in [1]) and the constants of 
integration, the load carrying capacity of the compression member can be determined. For some 
cases the load carrying capacity can be directly determined while for other cases, the load 



carrying capacity must be calculated iteratively. Alternatively, the load carrying capacity can be 
calculated without using the approach of the curvature with a numerical model according to 
Equation 3 and 4. 

NUMERICAL MODEL 
The numerical model is based on a column with hinges at both ends and considers geometrical 
and physical nonlinearities. It discretizes the compression member by a defined number of 
elements. If the number of subdivisions is large enough, the deflections in both directions will be 
represented adequately and the computation of the load carrying capacity leads to a reasonably 
accurate solution. The calculations of the bending moments and curvatures will be done with the 
displacement method considering the 2nd order theory. For the calculation of the load carrying 
capacity of the compression member the applied load is increased step by step. The load carrying 
capacity is reached when the normal force cannot be increased any further.  

For the stress-strain relationship of the numerical model, the equation of Eurocode 2 [5] is used: 

   
2

0
c

0
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f

1 k 2


   
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 (7) 

The value σ(η) represents the stress, k0 the degree of the non-linearity, η the ratio of the strain to 
the strain at maximal strength (η = ε/εf), fc the compressive strength and εf describes the 
compressive strain at maximal strength of the stress-strain relationship, see Figure 5.  

 

Figure 5: Stress-strain relationship of linear-elastic and nonlinear material [6] 

The value k0 is the normalised initial elastic modulus. The value k0 = 1.0 represents a linear-
elastic material, the value k0 = 2.0 represents a material with parabolic stress-strain relationship 
and the value k0 → ∞ describes a rigid plastic material. The value ηu is the ratio of the maximal 
strain to the strain at maximum strength (ηu = εmax/εf). A post-peak behavior exists only for 
ηu > 1.0. 
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LOAD CARRYING CAPACITY FOR THE UNCRACKED CROSS SECTION WITH 
LINEAR ELASTIC MATERIAL 
The equations of the load carrying capacity of all five cases regarding crushing and buckling 
failure are very complex. In this paper only the equations for failure of the uncracked cross-
section (case A) are presented. For all other cases see [1]. The analytical solution of the load 
carrying capacity (ΦR

II) considering 2nd order theory for linear elastic material with and without 
flexural tensile strength is:  

1
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As Equation 8 is only valid for uncracked cross-sections, the slenderness and the eccentricities 
have to be limited as follows: 
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For the slenderness in both directions, materially normalised values have to be used: 
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The value E0 is the initial elastic modulus. The eccentricities in displaced condition may be 
calculated as follows: 
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Equation 8 can also be used for predicting the load carrying capacity of other linear-elastic 
materials with flexural tensile strength, for example steel and wood. If the flexural tensile 
strength is equal to the compressive strength, the limit slenderness for crushing failure according 
to Equation 9 is infinite. Hence, for these materials, crushing failure considering 2nd order theory 
always occurs. Conservatively, Equation 8 can be used for non-linear materials like unreinforced 
concrete with and without flexural tensile strength. 

VERIFICATION OF THE ANALYTICAL MODEL 
To verify the analytical model, numerical calculations were carried out. Figure 6 shows the load 
carrying capacities as calculated using the analytical model and the numerical calculations for 
linear-elastic material without flexural tensile strength (|ft/fc| = 0). The graph is valid for a 

slenderness ratio of  = λy/λz = 2.0 and a ratio of the eccentricities of ψI = ez
I ∙t / (ey

I ∙ b) = 2/3. 
On the horizontal axis the slenderness parameter λy is shown whereas the vertical axis displays 
the normalised load carrying capacity considering 2nd order theory. For normalised resisting 
normal forces greater than 0.5 the cross section is uncracked and the compression member will 
fail due to crushing.  

For very small eccentricities, ey
I/t = 0.01 or ez

I/b = 0.01, and buckling failure, the curve nearly 
represents the Euler hyperbola. For centrically compressed members, the analytical model with 
Cy = Cz = 1/π² exactly confirms the Euler hyperbola. As shown, there are only minor differences 

between the analytical model and the exact numerical calculation. For other ratios of  and ψI, 
the differences between analytical and numerical model are similar. Thus the constants of 
integration Cy = Cz = 1/π² are sufficient to describe the shapes of the curvatures. Because 



analytical and numerical model are independent, both models validate each other theoretically. 
Additional, in [1] the analytical and numerical model is validated with test results. 

  

Figure 6: Comparison of the analytical model with the exact numerical calculation for 
linear elastic material without flexural tension strength [1] 

LOAD CARRYING CAPACITY FOR LINEAR ELASTIC AND PARABOLIC 
MATERIALS WITHOUT FLEXURAL TENSILE STRENGTH 
Figure 7 shows the load carrying capacity for parabolic non-linear materials with post-peak 

behavior (ηu = 1.5) for a slenderness ratio of  = λy/λz = 2.0. For comparison, Figure 7 also shows 
the load carrying capacity for linear-elastic materials. The different quadrants of figure 7 
illustrate different ratios of eccentricities (ψI = ez

I ∙t / (ey
I ∙ b)). For λy = 0, Figure 7 displays the 

load carrying capacity of the cross-section. The system with non-linear material results in greater 
cross-sectional carrying capacities than the system with linear-elastic material. Also, for greater 
slenderness, the system with non-linear material results in greater load carrying capacities. This 
can be explained by the greater initial elastic modulus and same compression strength fc and 
strain εf of the non-linear material. Because of the greater elastic modulus, the initial stiffness is 
greater and the deflections according to 2nd order theory are smaller which increases the load 
carrying capacity. Hence, for fixed strain, the linear-elastic material is the lowest limit for the 
load carrying capacity. Figure 7 can be used for the design of unreinforced masonry and concrete 
compression members. 
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Figure 7: Comparison of load carrying capacity of linear elastic and  
non-linear material for various load settings [1] 

SUMMARY 
This paper presents the load carrying capacity of compression members loaded eccentrically in 
two directions. It presents the principles of an analytical model with linear-elastic material. The 
analytical solution for the load carrying capacity of uncracked compression members with and 
without flexural tensile strength is presented. The only approximation of the analytical model is 
the shape of the curvature over the height of the compression member, which is represented by 
the constants of integration. The approximation of the shape of the curvature by the constants of 
integration only has a minor influence on the load carrying capacity, which is verified with an 
accurate numerical model. Therefore the load carrying capacity can be accurately predicted with 
the analytical model. In addition, the increase of the load carrying capacity due to non-linear 
material is discussed based on results of numerical calculations. 
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