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ABSTRACT 
Masonry is one of the oldest and most traditional construction types. Thus, corresponding safety 
concepts are often still based upon experience instead of being calibrated by structural reliability 
methods. Because of that, reliability analyses of masonry structures are needed to see if safety 
factors should be adjusted. Since masonry is a non-homogenous material, considering the spatial 
variability of material properties is very important when assessing the reliability of masonry 
walls. Therefore, it is useful to know if and to what extent spatial variability increases or 
decreases the reliability of masonry walls. Amongst others, this depends on the length of a wall 
due to the capability of load redistribution. Also, it depends on the slenderness of a wall or rather 
the governing failure mode which could be local compression or stability failure. This paper 
shows the effect of spatial variability on the load-bearing capacity of masonry walls in terms of 
mean value, scatter and design value. For this purpose, walls of varying length and slenderness 
were analysed with and without the consideration of spatial variability by performing Monte 
Carlo simulations. 
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MOTIVATION 
In the last decades, a lot of effort has been put into the development of precise mechanical 
models for the load-bearing capacity of masonry walls so that a safe and economical design can 
be guaranteed. Nevertheless, there are large uncertainties regarding the input parameters for 
these models which cannot be eliminated due to the natural scatter of material properties, for 
example. Therefore, all design codes establish safety concepts that should provide a certain 
reliability level. A safety concept or more precisely the safety factors defined by a safety concept 
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have to be well calibrated. A resulting reliability which is too low leads to structures that are not 
safe enough. If the reliability level is too high, structures designed according to this safety 
concept are not economical. It is obvious that the accuracy of mechanical models would be 
wasted if the corresponding safety factors are not well calibrated.  

Since unreinforced masonry has a very limited tensile strength, it is mainly designed for 
compression. In Figure 1, safety factors for the design of masonry in compression according to 
different national annexes of Eurocode 6 are shown. Note that the partial safety factor format 
according to Eurocode is defined as in eq. (1), which leads to safety factors larger than 1. 
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Where Ek and Rk are the characteristic values of load effect and resistance. The value γF is the 
partial safety factor for the load effect and γM is the partial safety factor for the resistance. 

 

Figure 1: Comparison of Safety Factors in National Annexes of Eurocode 6 [1] 

It can be noticed that the safety factors according to different national annexes of Eurocode vary 
a lot. To a certain extent, minor differences in the mechanical models defined by the national 
annexes as well as national construction characteristics are a reason for this discrepancy. 
Nevertheless, the extent of the discrepancy leads to the assumption that the majority of current 
safety factors are still based on experience and historical developments. Hence, it is very 
important to conduct reliability analyses which lead to probabilistically calibrated safety factors. 

One aspect that is often neglected in reliability analyses is the spatial variability of masonry 
properties. No material is perfectly homogenous. This is particularly true for masonry due to 
being composed of separate units and the mortar in between. Therefore, material properties like 
the compressive strength or the elastic modulus do not deviate homogenously from a certain 
mean value but the material properties also differ from unit to unit (and even within a unit). 
There are a lot of reasons why it is very important to consider spatial variability in reliability 
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analyses. First of all, a lot of effects can only be explained by spatial variation. This includes the 
location of failure, which is not always at the same location as the maximum stress, for example. 
Spatial variation also causes a size effect which means that the mean value of the relative bearing 
strength of larger structural members is lower than that of smaller members. In addition to that, 
experiments show that the scatter of the load-bearing capacity also depends on the member size, 
see e.g. [2]. According to EN 1996-1-1, this increased scatter for small cross-sections has to be 
considered in design by reducing the specified compressive strength with a factor of 

 0.7 3A 1.0                  (2) 

This reduction factor, which has to be applied to walls with cross-sections A smaller than 0.1 m², 
can only be explained and calibrated by considering spatial variability.  

A research project [3] regarding the reliability of slender ultra-high strength fibre reinforced 
concrete columns, which was conducted at the Technical University of Darmstadt, indicated that 
the consideration of spatial variability can lead to higher reliability indices. This means that 
theoretical safety deficits resulting from a reliability analysis may disappear if a more realistic 
approach of modelling the spatial variation is chosen. There have already been a few research 
projects that dealt with the reliability of masonry walls, see e.g. [2], [4], [5] and [6]. Most of 
them did not take the spatial variation of material parameters into account, an exception can be 
found in [7], for example. Here, the importance of considering the spatial variability for the 
reliability of masonry walls subjected to out-of-plane bending is emphasised. To the best of the 
authors’ knowledge, there are no existing research projects that investigated the reliability of 
masonry walls subjected to compression systematically and took spatial variation into account. 
This paper should be understood as a preliminary study regarding the reliability of masonry walls 
in compression with consideration of spatial variability.  

RELIABILITY OF STRUCTURES 
Performing a reliability analysis is equivalent to determining the probability of failure Pf of a 
certain structure. Since probabilities Pf are usually quite small in the field of structural 
engineering, the use of the probability of failure is not very handy as a dimension for reliability. 
Therefore, the reliability of a structure is usually given by the reliability index β. The relationship 
between failure probability Pf and reliability index β is defined via the cumulative distribution 
function Φ of the standardised normal distribution as 

   fP                          (3) 

A high reliability index β corresponds to a high reliability and vice versa. Safety factors or 
design values can only be calibrated if a target reliability is given, which must be chosen in a 
way that the calibrated safety factors neither cause unsafe nor uneconomical structures. 
According to EN 1990, safety factors for common structures shall result in a reliability index of 
β = 4.7 (Pf = 1.3 ∙ 10-6) for a reference period of 1 year or β = 3.8 (Pf = 7 ∙ 10-5) for 50 years, 



respectively. In general, safety factors for the resistance cannot be calibrated without knowledge 
about the distribution of the load effect. However, as a simplification, EN 1990 defines 
sensitivity factors αS = −0.7 and αR = 0.8 which make it possible to calibrate safety factors 
separately for load effect and resistance, respectively. The design resistance Rd (resistance 
including safety factor) for a reference period of 1 year can therefore be calculated by 

                  4
d RP R R 0.8 4.7 1 10              (4) 

Thus, the required design value only depends on the distribution of the resistance. If the spread 
of the resistance is high, the ratio of design value to mean value is low and vice versa. In this 
paper, for the quantification of the influence of spatial variability on the reliability of masonry 
walls, the distribution of the resistance of masonry walls in compression is determined and the 
corresponding required design resistances are calculated. 

FAILURE MODES OF MASONRY WALLS IN COMPRESSION 

General Remarks 
Depending on the eccentricity of the applied compression force, the slenderness of the wall and 
the stress-strain relationship of the material, a masonry wall in compression can fail due to local 
compression failure (which may include second order effects) or due to stability failure. A 
compression failure occurs if the compressive resistance of the critical cross-section is reached. 
The term stability failure means that the load cannot be increased anymore although the cross-
sectional bearing capacity is not reached at any part of the wall. This happens if an increase in 
deflection causes a higher increase in the moment due to second order effects than in the 
counteracting resistance due to stiffness of the member. If a wall fails due to compression failure, 
the compressive strength is the decisive material parameter. If it fails due to stability and the 
eccentricity is low, the elastic modulus is decisive.  

 

Figure 2: Stress-Strain Relationship and Parameter Definition 

In [8], an easy to use and still very accurate approximation formula is developed to calculate the 
load-bearing resistance of slender unreinforced masonry members in compression. The initial 
elastic modulus E0, the compressive strength f, the strain at reaching the compressive strength εf 
and the ultimate strain εu of masonry can be freely chosen according to Figure 2. The equations 
use standardised dimensions: Standardised initial elastic modulus k0, standardised ultimate strain 
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ηu, standardised load-bearing capacity Φ and standardised slenderness λ. In Fig. 2, NR is the 
compressive load-bearing capacity for a given eccentricity and considering second-order effects, 
l and t are the length and the thickness of the wall and hef is the buckling length of the wall. A 
value of k0 = 1 results in a line and a value of k0 = 2 in a quadratic parabola for the stress-strain 
relationship. The post-peak behaviour is modelled as a horizontal line with limited length. 
Resulting standardised capacities according to [8] are shown in Figure 3. In this diagram, the 
transition between stability and compression failure can be identified since it is at the inflexion 
point of the capacity curve. It can be seen that the definition of a tensile strength ft only has a 
stronger influence on the capacity if the eccentricity and the slenderness are high. For this paper, 
walls of different slenderness λ are analysed, the first slenderness leads to a compression failure 
and the second to a stability failure. 

 

Figure 3: Load-Bearing Capacity of Masonry Walls in Compression according to [8] 

Failure Mode and Spatial Variability 
If the strength of a system, which consists of different members, is stochastically modelled 
including spatial variability, two ideal systems can be defined as boundaries for the behaviour, 
see e.g. [9]. First, there is the series system. Its strength is determined by the weakest member of 
the system, i.e. the system fails if the weakest link has reached its strength. The second boundary 
is the parallel system with perfectly ductile elements. This means that the strength of the system 
is the sum of the member strengths or the average of the member strengths if strength is 
measured in the dimension of stress, respectively. The behaviour of a masonry wall lies in 
between these two boundaries. If a wall fails due to compressive strength, it behaves more like a 
series system, since the weakest course of the masonry wall determines the strength (if bending 
moment and compression force are constant). The strength of each course, nevertheless, behaves 
more like a parallel system since the load can be redistributed between the units in one course to 
a certain extent. The extent of this redistribution depends a lot on the post-peak behaviour i.e. the 
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ductility of the masonry material. If a wall fails due to stability, the local strength of the wall is 
not decisive anymore but the global stiffness of the wall which depends on the elastic moduli of 
all the units in the wall. The behaviour is close to that of a parallel system because a (weighted) 
average of the elastic moduli determines the load-bearing capacity. 

MONTE CARLO SIMULATION 

General Remarks 
When spatial variability is considered, a high number of random variables is required which 
makes it difficult to calculate a failure probability or a distribution function of the resistance 
analytically. Therefore, Monte Carlo simulations were performed. The Monte Carlo method is an 
alternative to analytical methods of calculating probabilities or probability distributions. The idea 
behind this method is to perform a very high number of simulations of the problem. These are 
conducted by using random numbers for all the basic variables which have been defined. The 
higher the number of the simulations is, the better the quality of the estimation of the failure 
probability or the distribution function gets.  

Finite Element Model 
The masonry walls were modelled with the finite element software Sofistik 2016 [10], see Fig. 4. 
For simplification, the material was considered to be isotropic and no differentiation between 
stone and mortar was made which means that the mechanical parameters for composite masonry 
were used and no bed joint was modelled. These simplifications may be discussed but seem to be 
sufficient for this preliminary study. To avoid a load transfer along the head joints which could 
be unfilled, the head joints were modelled as 2 mm wide gaps between the units. As parameters 
for the stress-strain relationship k0 = 2 and ηu = 1.75 were chosen which is given for calcium 
silicate full block masonry in [11]. For simplification, the post-peak behaviour was modelled 
with a horizontal line. The stress-strain relationship is very important for these investigations 
since it has a large influence on the possible load redistribution. Therefore, the results of this 
paper can be viewed as a first example and calculations have to be performed for different 
material behaviour, e.g. for more brittle materials, as well. The tensile strength was chosen as 
ft / f = 0.1 but does not have a big influence on the results since the eccentricity to thickness ratio 
e / t of the compression force is 0.1 which means that the cross-sections at the ends of the wall 
are completely in compression. All walls have 12 courses which lead to a wall height of 3.0 m, 
whereas the wall length was varied. The supports at top and bottom were modelled as pinned. 
Two types of walls were modelled, one with low slenderness which shows compression failure 
and one with high slenderness failing due to stability, see Fig. 3. To change the slenderness λ, 
thickness and elastic modulus were varied. All other parameters, e.g. the number of units, were 
chosen equally so that the results can be compared. 

Low slenderness wall:  t = 0.365 m E0 / f = 1000  hef / t = 8.2  λ = hef / t ∙ εf 
1/2 = 0.37 

High slenderness wall: t = 0.115 m E0 / f = 600  hef / t = 26.1 λ = hef / t ∙ εf 
1/2 = 1.51 



        

Figure 4: Finite Element Model  

Stochastic Model 
Since the compressive strength f and the initial elastic modulus E are the decisive material 
parameters for the walls that are analysed, these two parameters were chosen to be random 
variables in the investigation. A correlation ρf,E between elastic modulus and compressive 
strength was taken into account. It is important to consider this correlation between compressive 
strength and elastic modulus since this correlation usually decreases the reliability of masonry 
walls. The scatter of tensile strength was neglected since the tensile strength has almost no 
influence on the load-bearing capacity of the analysed walls. Geometrical parameters like the 
thickness of the wall or an eccentricity due to imperfections could also be modelled as random 
variables. However, the scatter of geometrical parameters was not within the scope of this paper. 

Table 1: Stochastic Parameters 

Basic Variable Distribution Type CoV Correlation 
compressive strength f log-normal 20 % 

ρf,E = 0.7 
elastic modulus E log-normal 25 % 

 

One challenge when stochastically modelling material parameters is the choice of the right 
distribution types and coefficients of variation (CoV). Both can be obtained by the statistic 
assessment of experiments. As mentioned before, the scatter depends on the sample size. 
Therefore, it has to be differentiated between CoVs that have been obtained for material 
properties of single units and CoVs obtained for samples consisting of more units. This 
differentiation is usually not found in literature, although this effect could strongly influence the 
results of reliability analyses. In [11], CoVs for the compressive strength of different masonry 
materials are given, ranging from 14 % for masonry made of large sized autoclave aerated 
concrete units to 20 % for calcium silicate masonry. Here, a log-normal distribution with a CoV 
of 20 % is chosen for one unit, see Table 1. The CoV for the elastic modulus is selected as 25 %, 
which is given as an estimate in [11]. For the correlation coefficient between elastic modulus and 
compressive strength ρf,E = 0.7 was assumed, which is also used in [2].  

Height: h = hef = 3.0 m 

Unit height: 250 mm 

Unit length: 498 mm 

Courses: 12 

Eccentricity: e / t = 0.1 

k0 = E0 ∙ εf / f = 2 

ηu = εu / εf =1.75 

ft / f = 0.1 



The spatial variation of material properties is usually modelled as a random field with a certain 
correlation function. For masonry it seems appropriate to model spatial variability as a unit-to-
unit variability. A correlation coefficient ρspat between the elastic moduli and compressive 
strengths of different units i and j was defined, see Fig 5. This correlation coefficient is 
independent of the location of the units i and j. Reasons for this correlation are, for example, that 
workmanship affects the strength of the whole wall and that all units for one wall are usually 
within one production batch. 

         

Figure 5: Correlations between Material Properties 

Generation of Random Properties 
Random numbers are usually given as a random value between 0 and 1. Random properties can 
then be generated by applying the corresponding inverse cumulative distribution function to this 
random number. When random variables are correlated with each other, this gets more complex. 
To achieve the desired correlation for this application, the following approach was developed. 

The product of log-normal random variables is also log-normally distributed which is why 
random properties for the compressive strength fi and the elastic modulus Ei of a certain unit i 
can be described by a product of four independent log-normally distributed random variables: 

   i w i u,iE W E U E   (5)       i w i u,if W f U f          (6) 

The random variables W and Ui determine the correlation ρf,E between Ei and fi since they are the 
same for elastic modulus and compressive strength. W describes the “shared” deviation of 
compressive strength and elastic modulus of the whole wall from a mean value and Ui is the 
“shared” deviation of compressive strength and elastic modulus of a single unit. The variables W, 
Ew and fw determine the spatial correlation ρspat between the individual units since they are the 
same for all the units and describe the deviation of compressive strength and elastic modulus of 
the whole wall. The mean values of W, Ui, Ew, and fw are 1. The final multiplication with Eu,i and 
fu,i, which contain the additional deviation of the compressive strength and the elastic modulus of 
a single unit, leads to the material parameters of the individual units. The mean values of Eu,i and 
fui are the mean values of elastic modulus and compressive strength. The coefficients of variation 
ν of the single random variables can be determined according to eq. (7) to (10), which were 
derived by using the common formulas for the correlation coefficient and the variance of 
products of random variables. 

… … Ej, fj

Ei, fi … …

… … …

E1, f1 E2, f2 …

ρ Ei fi Ej fj

Ei 1 ρf,E ρspat ρf,E∙ ρspat

fi 1 ρf,E∙ ρspat ρspat

Ej 1 ρf,E

fj symmetric 1
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wf
ν  and 

u ,ifν can be determined equivalently to eq. (8) and (10). 

Results and Discussion 
Monte Carlo simulations were performed for the two wall types of different slenderness with a 
varying length of 1, 3 and 5 units and for a spatial correlation ρspat of 0, 0.25, 0.5, 0.75 and 1. 
This means that 30 walls were analysed. For each of these walls, 400 random simulations were 
conducted and statistically evaluated. For the distribution function of the resistance, a log-normal 
distribution with mean value and CoV according to the simulation results was assumed. Based 
on that, the required design value was calculated according to eq. (4). For the calibration of 
safety factors, model uncertainties would have to be considered, too, which have not been 
included in the calculated design values yet. Fig. 6 and 7 show the results for both wall types in 
terms of mean value and required design value. Note that a correlation coefficient of ρspat = 1 
means that there is no spatial variability i.e. the wall is homogenous, whereas ρspat = 0 means that 
there is no correlation between the units and therefore full spatial variability.  

It can be see seen that the two wall types behave differently when spatial variability is 
considered.  The mean capacity of the walls failing due to local compression decreases if spatial 
variability is considered. For this failure mode, the wall is closer to a series system, which means 
that the wall fails if the weakest course fails. The walls failing due to stability behave more like a 
parallel system, which means that the capacity of the system is determined by the average unit 
stiffness and therefore, the mean value of the load-bearing capacity is not affected by spatial 
variability. For both wall types, the mean values without spatial variation (ρspat = 1) match well 
with the deterministic results shown in Fig. 3. The space between mean value and required 
design value represents the scatter of the corresponding wall capacity. It can be seen that this 
scatter decreases for all walls if spatial variability is considered. In almost all cases, this leads to 
a higher design capacity, which means that spatial variability increases the reliability. This is 
even true for most of the walls failing due to compression. With more spatial variability, the 
scatter decreases that strongly that it overcompensates the decrease of the mean value. Still, the 
positive effect due to spatial variability is bigger for walls failing due to stability since the mean 
capacity does not decrease. One exception for the positive effect of spatial variability is the wall 
with low slenderness and just one unit in each course since no load redistribution is possible for 
this wall. Here, the design value does not increase with more spatial variability. This leads to a 
gap between the design value for the wall of 1 unit and those of 3 and 5 units, which is illustrated 
by the red area. This gap indicates that, in principle, a reduction factor for small cross-sections, 



like defined in eq. (2) according to EN 1996-1-1, is justified. Because of the missing ability of 
load redistribution, the spread of the capacity for these walls is bigger and therefore the design 
capacity should be reduced. There is almost no difference between the walls with courses of 3 
and 5 units. This indicates that load redistribution is limited to a few neighboring units and is not 
possible along the whole course. 

 

Figure 6: Mean and Design Capacity of Walls Failing due to Compression 

 

Figure 7: Mean and Design Capacity of Walls Failing due to Stability 
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CONCLUSIONS 
Big differences between the safety factors of different design codes indicate that probabilistic 
analyses are needed to calibrate these factors and thereby improve the corresponding safety 
concepts. It was emphasised that spatial variability of material parameters should be considered 
in such reliability analyses. The results of Monte Carlo simulations showed that spatial 
variability has an influence on mean value, scatter and required design value of the load-bearing 
capacity and therefore on the reliability of the wall. It was pointed out that this effect differs 
depending on the failure mode and that, in most cases, the consideration of spatial variability will 
lead to higher reliability indices determined for masonry walls in compression. Further research 
should focus on the improvement of mechanical and stochastic models which can describe 
masonry walls including their spatial variability. Therefore, tests are required to gain reliable 
stochastic material parameters like spatial correlation coefficients, for example. With these 
improved models, reliability analyses can be performed for the calibration of safety factors. 
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