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ABSTRACT 
The behaviour of partially grouted masonry (PG) shear walls is complex, due to the inherent 
anisotropic properties of masonry materials and nonlinear interactions between the mortar, grouted 
cells, ungrouted cells, and reinforcing steel. Since PG shear walls are often part of lateral force 
resisting systems in masonry structures, it is crucial that its shear behaviour is well understood, 
and its shear strength is accurately predicted. This paper presents the development of an ANN 
model for analyzing the shear strength of PG walls.  Artificial neural networks (ANN) have the 
unique ability to address highly complex problems and the potential to predict accurate results 
without a defined algorithmic solution. By providing an ANN with a dataset of multiple inputs and 
a corresponding output, it can be trained to determine the weighted effect of each input parameter 
and describe nonlinear relationships that may exist among the variables. ANNs have also shown 
success despite noisy, inconsistent, or imprecise input data. An experimental database of PG shear 
walls is used as input for the ANN analysis model. Finite element modelling (FEM) is used to 
address gaps in input values which exist in the database. The effect of previously unaccounted 
parameters in code-based approaches is discussed, as well as the influence of different types of 
ANN analysis options and input size on the model predictions. The ANN model results are 
compared against leading design codes in North America (CSA S304.14) to predict the in-plane 
shear strength of PG shear walls. 
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INTRODUCTION 
Partially grouted (PG) walls are commonly used in many seismic regions as part of lateral force 
resisting systems in masonry structures. While fully grouted (FG) walls contain grout in all cells, 
PG walls contain columns of grout exclusively in cells where vertical reinforcement bars are 
placed. As a result, they offer an economic advantage over FG walls due to reduced material and 
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labour costs [1, 2]. However, the behaviour of PG walls under shear loading is not well understood. 
The current design expressions available for predicting the in-plane shear strength of PG walls 
have been found to be inaccurate, and in some cases, unconservative [3]. 

The shear strength and behaviour of PG walls is highly dependent on variables such as the wall 
geometry, level of axial load (increasing interlocking between masonry units in diagonal cracks), 
ratio of net/gross area, and distribution of horizontal (increasing ductility and energy dissipation) 
and vertical reinforcement (resisting shear loading at crack openings) [2, 4]. Under in-plane 
loading, masonry walls will typically fail in flexure, in shear, or a combination of both. Flexural 
failure is characterized by bed joint cracking and toe crushing. Shear failure is characterized by 
diagonal tension cracks, rapidly decreasing the stiffness of the wall and often resulting in brittle 
failure [3, 5, 6]. This paper focuses on PG walls which are governed by in-plane shear failure.  

Under lateral loading, a PG wall’s grouted/reinforced cells tend to deform through frame action, 
while the cracked hollow portions act as an infill with reduced shear stiffness [2]. Unlike FG walls, 
PG walls do not behave as monolithic walls due to the nonlinear interactions that exist between 
mortar, grouted cells, ungrouted cells, and reinforcing steel. Instead, the behaviour of PG walls is 
similar to infilled walls subject to lateral loads [7]. 

Artificial neural networks (ANNs) are a powerful machine learning tool capable of processing 
large samples of data. It has great potential in recognizing nonlinear relationships to address 
complex problems and has demonstrated success in many engineering research applications. 
Although finite element (FE) models are more robust than ANNs and could be used to investigate 
the behaviour of PG walls, is often resource heavy and requires significantly more time to prepare 
models. On the other hand, ANNs are a more efficient alternative to perform analysis through 
pattern recognition and function approximation.  

This paper explores the use of ANNs to predict the in-plane shear strength of PG walls and FE 
modelling to increase the input training database for ANN analysis. The effects of varying neural 
network architecture parameters are investigated to produce an improved prediction output by a 
trained neural network.  In addition, the experimental data has been expanded with more results 
obtained from the literature. 

ACCURACY OF EXISTING SHEAR EXPRESSIONS 
Many design codes have adopted a semi-empirical approach to predict shear strength of PG walls. 
Due to their inherent complex behaviour and the lack of test data, equations to predict the shear 
strength of PG walls often rely on arbitrary reduction factors to achieve safety levels comparable 
to those found in the better understood FG walls.  However, recent studies have shown that  
available design expressions currently used in Canada (and other countries) to predict the in-plane 
shear strength of PG walls are inconsistent and may be unconservative, overestimating the lateral 
load capacities of PG walls by as much as three to four times [2, 3, 8–11]. The inadequacy of 



current design expressions to consistently predict the in-plane shear strength of PG walls has led 
to the use of alternative analysis techniques, such as ANN analysis models. 

NEURAL NETWORKS: GENERAL DESCRIPTION 
ANNs are a powerful tool to process large databases of information and recognize underlying 
patterns which may exist in the data, and especially any nonlinear relationships among variables.  
Through a process of “learning,” an ANN mimics its biological counterpart by adapting synaptic 
weights with each new piece of information it receives [12]. A well-trained ANN with accurate 
predictions does not use a physical model of the problem (such as the strut-and-tie formulation), 
but relies on an optimal arrangement of neurons and its connections [12–14]. 

Feedforward backpropagation neural networks are a type of multilayer perceptron network that is 
commonly used for engineering applications. Such neural networks are favourable due to their use 
of non-linear transformations for function approximations [15]. A simplified schematic of a 
feedforward backpropagation neural network is illustrated by Figure 1.  

 

Figure 1: Feedforward backpropagation neural network architecture (Adapted from 
Plevris and Asteris) [16] 

A “neural network” can be described as numerous neurons highly interconnected to one another. 
The feedforward backpropagation neural network as previously described consists of three layers 
of neurons: an input layer, a hidden layer, and an output layer. The number of neurons in the input 
layer is determined by the number of input parameters that are fed into the network. Hidden 
neurons process the input values by linearly combining them based on a matrix of weights plus a 
bias. Then, a transfer function is applied to the linear combination computed. The output neuron 
processes the values input from the hidden layer in a similar manner, computing a single predicted 
output by the ANN [12, 15, 17–20]. A single neuron process is illustrated in Figure 2. 

The matrix of weights and biases of a neural network are initially randomized. With each data 
point fed into the network, the expected output (experimental value) is compared with the 



network’s predicted output, and its error is propagated backwards through the network to adjust 
and fine-tune the weights and biases. In this way, the ANN’s capability to predict the output is 
incrementally improved. The ability of an ANN to be successfully trained is highly dependent on 
the number of known sets of inputs and outputs that is processed by the network. A trained ANN 
is only effective in making predictions within the range of input variables that was used for training 
[12, 15, 17, 21]. 

 

Figure 2: Single neuron work [17] 

Hidden Layer & Neurons 
Despite several guidelines developed to optimize the number of hidden neurons in the hidden layer 
of an ANN, no guideline has been universally agreed upon [22–24]. The number of hidden 
neurons, however, significantly impacts the ANN’s performance. While too few hidden neurons 
will hinder its capacity for pattern recognition, too many hidden neurons in the ANN leads to an 
overpowered neural network which tends to overfit the data and renders it incapable of 
generalizing predictions [12, 25]. 

This brief description of an ANN offers only elementary components of neural networks. Readers 
interested in more detailed explanations of ANNs may refer to Haykin [12], Tu [14], Basheer and 
Hajmeer [26], and Svozil et al. [27]. 

PREVIOUS RESEARCH CONDUCTED WITH NEURAL NETWORKS 
ANNs have been successfully developed to address highly complex problems for a wide spectrum 
of structural engineering applications.  Goh [28] demonstrated the ability for a trained ANN to 
predict the deflection of a cantilevered beam. Plevris and Asteris [16] were successful in training 
an ANN to predict masonry failure surfaces under biaxial compressive stress.  

In a study conducted by Aguilar et al. [20], ANNs were developed to predict the in-plane shear 
strength of both FG and PG walls. The ANNs were trained with an experimental database of 96 
fully grouted concrete block walls, 95 partially grouted concrete block walls, 37 fully grouted 
ceramic block walls and 57 partially grouted ceramic brick walls. The determination coefficient 
(ܴଶ) of the correlation, the mean-squared-error, and the mean and standard deviation of 
experimental to predicted values ( ܸ௫/ ܸ) for each trained ANN are summarized in Table 1.  It is 

seen that the trained ANN for partially grouted concrete block walls did not perform as well as the 
ANN for the other three types of walls. Ideally, the value of determination coefficient ܴଶ for a 



trained ANN is 0.90 or greater. An insufficient database size, as well as gaps of information in the 
range of data used for training are possible reasons for the inability of the ANN to predict the in-
plane shear strength of CB PG walls [20]. 

Table 1: ANN results from study performed by Aguilar et al. [20] 

Wall Type R2 
Mean-Squared-

Error 
Mean 
 ࢂ/࢞ࢋࢂ

Std ࢂ/࢞ࢋࢂ 

Fully Grouted Concrete Block 0.931 0.039 0.997 0.151 
Partially Grouted Concrete Block 0.750 0.007 1.013 0.155 

Fully Grouted Ceramic Block  0.952 0.024 0.985 0.089 
Partially Grouted Ceramic Brick 0.848 0.007 1.005 0.152 

EXPERIMENTAL DATABASE 
The database for training the ANN is a compiled set of specimens from various experimental 
studies performed on the in-plane shear strength of PG walls. The database used in this study is 
summarized in Table 2. 

Table 2: PG walls experimental database for ANN training 

Source Specimens Source Specimens
Voon [29] 2 Baenziger & Porter [30] 8 

Minaie et al. [2] 4 Scrivener [31] 12 
Matsumura [32] 29 Ghanem et al. [33] 2 
Chen et al. [34] 4 Schultz [35] 6 

Yancey and Scribner [36] 10 Elmapruk [37] 6 
Schultz et al. [38] 6 Ramirez et al. [39] 10 

Oan [40] 66 Maleki et al. [41] 5 
Nolph et al. [10] 5 Total 175 

 

Since the compiled experimental data was recorded by various authors, not all experimental 
programs were recorded with the same level of detail, resulting in gaps of information such as 
testing apparatus details and other parameters. Engineering judgement was exercised to complete 
the database such that there is a data entry for each parameter for each specimen. In addition, a 
certain level of judgement was used to ensure that only the studies presenting a clear and sound 
methodology of reporting data were included for ANN analysis, eliminating any unrealistic or 
unreliable experimental studies from the experimental database. 

PROCESSING WITH NEURAL NETWORKS 

Network Architecture 
The network architecture used in this study is a 9-n-1 feedforward backpropagation neural network 
multilayer perceptron network: 9 neurons in the input layer, (n) neurons in the hidden layer, and 1 
neuron in the output layer. A sigmoid transfer function was used for the hidden layer. The 



Levenberg-Marquardt algorithm is used to adjust the weights and biases during backpropagation. 
80% of the data was used to train, while 10% of the data was used to validate, and 10% used to 
test the neural network. MATLAB’s Neural Network Toolbox was used to generate and train the 
neural network.  

Iterative Approach to Artificial Neural Networks 
Each time a neural network is initiated, certain network parameters are randomized: the set in 
which each data point is assigned (training, validation, or testing), the order in which each data 
point is fed into the neural network, and the matrix of layer weights and biases. Therefore, each 
initialization of a neural network results in a uniquely trained ANN [42]. 

Table 3:  Input and output parameters 

Parameter Range Parameter Range 
Input 1 ܪ (mm) 900-5283 Input 6 ݂௨௧ (MPa) 10.68-47.54 
Input 2 ݐ (mm) 48-200 Input 7 ߩ௩ ௬݂௩ (MPa) 0-9.54 
Input 3 ݀௩ (mm) 751-3416 Input 8 ߩ ௬݂ (MPa) 0-1.29 
Input 4 ܣ௧/ܣ௦௦ 0.35-0.78 Input 9 ߪ௦௦ (MPa) 0-2.78 

Input 5 ݂ሺሻ
ᇱ  (MPa) 6.4-24.3 Output ݒ௫,௦௦ (MPa) 0.246-2.21 

 

If an infinitely large database is available for training an ANN, then, in theory, it will eventually 
develop into a successfully trained neural network by adjusting the layer weight matrix with each 
new data point. However, the availability of large amounts of data is not typical in structural 
engineering applications.  Since a relatively “small” database consisting of only 175 PG walls was 
compiled in this study, the randomized initial layer weight matrix becomes a critical factor in the 
ANN’s ability to converge and train successfully. Therefore, it is necessary to reinitialize the ANN 
numerous times to achieve an optimum ANN performance. The trained ANN with the best 
peformance is then used for predicting the in-plane shear strength of PG walls. 

RESULTS 
The results from the trained ANNs from this study are compared with the ANNs from Aguilar et 
al. [20] in Table 4. The iterative approach mentioned in the previous section is used to obtain the 
ANN with the best performance. It can be observed that the increase of input neurons from 5 to 9 
has improved the performance of the ANN.  

 

 

 

 



Table 4: ANN performance from Aguilar et al. [20] and current study 

Source ANN Architecture MSE R2 Mean Std 

Aguilar et al. [20] 
5-1-1 0.014 0.504 1.008 0.225 
5-2-1 0.010 0.646 1.012 0.185 
5-3-1 0.007 0.750 1.013 0.155 

Current Study 
9-1-1 0.020 0.853 1.010 0.208 
9-2-1 0.008 0.941 0.988 0.135 
9-3-1 0.005 0.964 0.998 0.108 

 

As expected, the increase in hidden neurons increases the determination coefficient (ܴଶ) of the 
correlation. The standard deviation and mean-squared-error also decreases.  

The performance of existing design expressions provides a useful benchmark against trained 
ANNs, as demonstrated in studies such as Aguilar [43] or Naik and Kute [44]. Therefore, the 
performance of the design expression from CSA Standard S304.14 [45] is shown in Figure 3 on 
the following page as a benchmark to illustrate the performance the 9-n-1 ANNs from this study.  

 

 

Figure 3: Comparison between existing CSA S304.14 design expression and trained ANNs 
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Mean = 1.65 
R2 = 0.0437 
Std. Dev. = 0.69 
5th perc. = 0.679 

Mean = 1.011 
R2 = 0.852 
Std. Dev. = 0.21 
5th perc. = 0.651 

Mean = 0.988 
R2 = 0.941 
Std. Dev. = 0.14 
5th perc. = 0.749 

Mean = 0.998 
R2 = 0.964 
Std. Dev. = 0.11 
5th perc. = 0.823 



FINITE ELEMENT MODELLING OF PG SHEAR WALLS 
Although these preliminary results indicate that ANNs are a viable option to predict the in-plane 
shear strength of masonry walls, there are gaps in the design variables used as input in the database. 
To address these gaps, a FE analysis validated with experimental results can be used to generate 
theoretical specimens and enlarge the database.  FE program VecTor2 was chosen to conduct the 
analysis discussed in this section.  Studies show that masonry can be modelled as a continuum 
with average properties where joint failures are smeared across the single element for sufficiently 
large masonry structures [46]. The tensile behaviour of masonry is modelled as an isotropic linear 
elastic material and modelled as a continuum that may slip along the head and bed joints even 
when the material is uncracked [46].  

A PG wall specimen tested by Maleki [47] was used to verify the performance of the FE analysis 
model. The wall is 1800mm x 1800mm x 90mm, (Figure 4). Wall reinforcement consists of three 
horizontal D4 steel bars and three vertical No. 10 bars.  The wall was subject to constant gravity 
load of 120kN and a cyclic lateral displacement was applied up to 7.2mm. 

 

Figure 4: VecTor2 model of partially grouted shear wall 

The material properties of the wall are shown in Figure 4. The test results of the physical wall by 
Maleki [47] and the VecTor2 model are illustrated in Figure 5 and Table 5 on the following page.  
The calculated peak load is reasonable close (by 13%) to the measured results.  The displacement 
prediction showed reasonable correspondence as well with the available experimental data. 



 

Figure 5: Superimposed graph of real and model walls  

The results suggest that a FE analysis model is a practical option for generating additional input 
data for training the ANN. The relative error between measured and calculated peak strength is 
within 15-20%. This range of error is typical for FE models with materials similar to masonry, 
such as reinforced concrete and prestressed concrete structures. Given that the FE model used in 
this study is a macroscale model, it would be expected that microscale models would be more 
accurate. Further work on the model is ongoing to refine and validate the FE model, followed by 
utilizing the model results to increase the ANN training database size. 

Table 5: Comparison of experimental vs VecTor 2 results 

 Experimental Result VecTor2 Result 

Force Direction Push Pull Push Pull 
Load (KN) 91.2 96.9 78.4 80.4 

Displacement (mm) 2.88 2.88 2.45 2.93 
 

FURTHER RESEARCH 
Recent research studies evaluating the adequacy of available PG in-plane shear strength 
expressions have proposed areas for improvement. Despite the presence of wall ratio in several 
design expressions, Minaie et al. [2] suggests that the area of the wall has a size effect on in-plane 
shear strength. The vertical and horizontal spacing of grout and reinforcement were also found to 
be a major factor influencing shear strength. Janaraj and Dhanasekar [11] found that the horizontal 
reinforcing steel rarely reaches its yield capacity when the wall undergoes shear failure. Thus, 
Janaraj and Dhanasekar have suggested that the inclusion of horizontal and vertical reinforcing 
steel in predicting the in-plane shear strength of PG walls is unjustified. Future research is required 



to address the unaccounted parameters identified by Minaie et al. and Janaraj and Dhanasekar and 
investigate their influence on the in-plane shear strength of PG walls. 

CONCLUSIONS 
The preliminary results presented in this paper demonstrate the potential for utilizing ANNs to 
address the limitations of current design expressions to predict the in-plane shear strength of PG 
shear walls. Further research involves expanding the database size to address existing gaps in the 
database, increasing the ANN’s ability to learn and identify patterns, and distilling design 
equations from the ANN. This can be achieved by a combination of three strategies: (i) additional 
experimental testing, (ii) further literature review to include more shear-critical PG wall 
specimens, and (iii) use of FE analysis models to generate input data that bridges the gaps 
identified in the design variables.  
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