
 
 
 
 
 
 

13 T H  C A N A D I A N  M A S O N R Y  S Y M P O S I U M   
H A L I F A X ,  C A N A D A  
JUNE 4TH – JUNE 7TH 2017 

HYBRID SIMULATION WITH DYNAMIC SUBSTRUCTURING OF MASONRY 

STRUCTURES: A NUMERICAL STUDY 

Abbiati, Giuseppe1; Miraglia, Gaetano2; Mojsilović, Nebojša3 and Stojadinović, Božidar4 

ABSTRACT 
Hybrid simulation is used to compute the time history response of an emulated system subject to 
a dynamic excitation by combining a physical and a numerical substructure. The former is tested 
in the laboratory by means of servo-controlled actuators whist a real-time computer simulates the 
latter and solves the coupled equation of motion. Hybrid simulation has been extensively applied 
for seismic response history analysis of steel and concrete frame structures. For these systems, 
subdomain partitioning follows storey levels and nodal joints among beam/column-like elements. 
In the case of planar masonry structures, distributed interfaces characterize system subdomains 
and, in principle, several actuators should be used to impose the correct boundary conditions to 
the tested specimen. This paper presents a new substructuring method for planar masonry 
substructures, which aims to reduce the number of actuators necessary to achieve a predetermined 
coupling accuracy between physical and numerical subdomains. The numerical validation of this 
procedure is illustrated for a masonry building facade system. 

KEYWORDS: seismic analysis; hybrid simulation; dynamic substructuring; non-matching 
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INTRODUCTION 
Hybrid Simulation (HS), which is also known as Hardware-in-the-Loop (HiL) testing, has been 
introduced in the 1970s to simulate the seismic response of civil structures [1,2]. The hybrid model 
of the emulated system combines numerical and physical subdomains (NS and PS) and its dynamic 
response to a realistic excitation is simulated using a numerical time-stepping response history 
analysis. A computer-controlled system applies displacements to the PS using hydraulic/electric 
servo-actuators and corresponding restoring forces are measured from these degrees of freedom 
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(DOFs) using load cells and fed back to the hybrid model. Then the equation of motion is solved 
at the next time step. When the response of the PS does not depend on the rate of loading, a 
pseudodynamic (PSD) HS can be performed at an extended time scale, typically in the broad range 
of 50-200 times slower than the actual earthquake, requiring inertia and damping forces to be 
modelled numerically. Real-time (RT) HS is a special case of PSD-HS when a unit time scale is 
applied. Lack of reliable mathematical models or strongly nonlinear responses justify the 
experimental substructuring of a system subcomponent, i.e. the PS, while well-known subparts are 
instantiated in a numerical simulation software, namely computational environment, as NS. HS 
has been extensively applied for seismic response history analysis of steel and concrete frame 
structures. However, in the authors' knowledge, there is still a paucity of applications to planar 
masonry structures. Paquette and Bruneau, [3,4], used PSD-HS to understand the flexible-
floor/rigid-unreinforced-wall interaction during earthquake and the effectiveness of the use of 
fiberglass strips for retrofitting purposes. Pinto and co-workers, [5], performed PSD-HS of 
different historical constructions subjected to earthquake loading. The extreme sensitivity of 
friction-based analytic models with respect to assumed friction coefficients motivated Buonopane 
and White to simulate the seismic response of a frame infilled with masonry by means of PSD-
HS, [6]. Along the same line, [7], assessed the seismic performance of a multi-story infilled frame 
through PSD-HS and observed a strong correlation between wall damage and hysteretic energy 
dissipation. In all these cases, an entire facade of a masonry building was substructured in the 
laboratory and treated as a frame with storey masses lumped at the corresponding levels. However, 
this is not possible, for example, when only a portion of the wall is substructured in the laboratory 
and distributed boundaries characterize subdomain interfaces. In this case, several actuators should 
be used to impose the correct boundary condition to the PS, [8,9]. 

This perspective motivated the authors to develop a new substructuring method for planar masonry 
structures. The procedure is illustrated for a virtual case study consisting on a simple Planar 
Masonry Facade System (PMFS) subjected to gravity and seismic loads. A portion of the PMFS 
is supposed to be substructured in the laboratory as floating PS while the remainder is treated as 
NS. In common practice, a geometric transformations eliminate rigid body translations and 
rotations and the only deformational component of the PS displacement response is applied to the 
tested specimen, which is typically fixed to a loading frame. Accordingly, a Reference (R) Finite 
Element (FE) partitioned model of the structure is implemented in Matlab, [10], and separated 
analyses of deformational components of the PS response owing to gravity and seismic loads 
support the determination of simplified coupling conditions. In order to impose piecewise affine 
displacement fields along subdomain boundaries and reduce the number of connected nodes, rigid 
Interface Super-elements (ISs) are introduced on both NS and PS boundaries. In detail, rigid beam 
and link elements forms the NS interface super-element while steel frames, anchors and connection 
rods form the PS interface super-element, which imposes simplified interface boundary conditions 
to the PS in the laboratory. A Modified (M)-FE partitioned model of the PMFS, which incorporates 
rigid ISs, is used to validate the proposed approach in pure numerical simulation. Finally, a 



possible experimental setup is illustrated, which is based on a typical three-actuator setup used for 
quasi-static cyclic test of masonry walls. 

DESCRIPTION OF THE CASE STUDY 
This section describes the Planar Masonry Facade System (PMFS) as well as the Reference Finite 
Element (R-FE) partitioned model used to validate the substructuring method. 

Planar masonry facade system 
A rectangular shape of 9.6 x 6.6 m size with three openings and a uniform wall thickness of equal 
to 0.6 m characterizes the geometry of the PMFS, which is reported in Figure 1. 

Figure 1: Geometry of the PMFS with static 
loads and main dimensions 

Figure 2: Record of Loma Prieta 
earthquake, 1989 

The PMFS carries gravity loads owing to self-weight and storey masses (equal to 40 kN/m and 26 
kN/m for the first and last floor, respectively), and it is subjected to a transversal seismic excitation, 
which is represented by an accelerogram of the Loma Prieta earthquake of 1989 recorded from the 
UCSC station; see Figure 2 in this respect. In order to observe the crack pattern in the proximity 
of the upper openings, a portion of the PMFS is virtually substructured in the laboratory (PS) whilst 
the remaining portion of the PMFS is simulated in the computer (NS). 

Numerical modeling 
In order to simulate the hybrid physical/numerical substructuring of the PMFS a 196-node and 
156-element R-FE partitioned model was implemented in the MATLAB environment, [10], 
according to partitioning scheme of Figure 1. To this end, a linear 4-node membrane element was 
coded in MATLAB and verified against the ANSYS PLANE element, [11], as reference 
benchmark. A uniform linear isotropic elastic material was assigned to the entire PMFS, which is 
characterized by Young elastic modulus ܧ of 0.650	ܽܲܩ, Poisson ratio ߭  equal to 0.35 and density 
 ݇݃/݉ଷ. Figure 3 shows the R-FE partitioned model of the PMFS with NS and PS	of 1900 ߩ
partitioning highlighted. 



Figure 3: R-FE partitioned model of the PMFS. 

For the sake of clarity, a generic system DOF is indicated with the corresponding node number 
and direction of the displacement component, e.g. 196-X corresponds to the X displacement of 
node 196. In order to retain all substructure interface DOFs, a dual-assembly procedure based on 
Localized Lagrange Multipliers (LLM) was used to derived the coupled equations of motion, [12], 
which read: 
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In this specific case, superscripts N and P refer to NS and PS subdomains, respectively. With 

regard to a generic subdomain ݈, Mሺ௟ሻ, Cሺ௟ሻ	and	Kሺ௟ሻ are the mass, the damping and the stiffness 

matrices while uሷ ሺ௟ሻ, uሶ ሺ௟ሻ	and	uሺ௟ሻ denote acceleration, velocity and displacement vectors. Lሺ௟ሻ and 

Lതሺ௟ሻ are Boolean signed matrices that collocates interface DoFs within the single subdomain and 

the reference DoF vector, respectively. Vector Fሺ௟ሻሺݐሻ represents the external time-varying load. 

Lagrange multiplier vectors Λሺ௟ሻ represent interface force fields enforcing kinematic compatibility 
among subdomains and the reference DoF vector	u௚. Figure 4 summarizes the main results of the 

modal analysis of the R-FE partitioned model. 



 
 

Mode Frequency (Hz) Period [s]
1 9.87 0.1013 
2 21.69 0.0461 
3 22.87 0.0437 
4 25.33 0.0395 
5 28.51 0.0351 

 

Figure 4: Modal analysis of the PMFS. 

As shown in Figure 4, Mode #1 is characterized by the global translation of the PMFS along the 
X direction. 

SIMPLIFIED COUPLING CONDITIONS 

Deformational response of the physical substructure 
In the common practice of HS, a geometric transformation compensates the rigid-body response 
the PS, which is constrained to a loading frame, and the sole deformational component of the PS 
response is applied to the tested specimen. Rigid body modes of the PS are defined as, 

Φ
௉ ൌ ሺK௉ሻ (2)ݎ݁݇

 
where ݇݁ݎሺ∙ሻ is the kernel of a generic matrix ሺ∙ሻ. In order to extract the pure deformational 
component of the PS response, a number of DOFs equal to the number of rigid body modes is 
constrained. Figure 5 depicts the constraint setting of the PS. 

List of constrained DOFs 
Node Direction 

88 X 
88 Y 
89 Y 

 

Figure 5: Constraint setting of the PS. 

The pure deformational component of the PS response, which is applied to the tested specimen, 
reads: 
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where the rigid body response vector α௞
௉ is calculated as: 
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where superscripts ݎ and ܿ stand for retained and constrained DOFs whilst subscript ݇ represents 
a generic time step of the response history. 

1.1 Static analysis considering gravity loads 
The static analysis of the coupled system response is performed using a version of the algorithm 
proposed by Farhat and Roux, [13] enhanced to the LLM framework, [12]. Accordingly, loading 
vectors Fேሺݐሻ and F௉ሺݐሻ include gravity loads only. 

Fሺ௟ሻሺݐሻ 	ൌ െMሺ௟ሻT௚
ሺ௟ሻ݃ (6)

 

where the subscripts indicate a generic subdomain ݈  and T௚
ሺ௟ሻ is a Boolean vector defined according 

to the direction of the gravity acceleration g. Figure 6 depicts the pure deformational component 
of the displacement response of the PS subjected to gravity loads only. 

Figure 6: Deformed shape of the PS owing to gravity load. 

As shown in Figure 6, the static analysis reveals an almost uniform lowering of wall top. 

Principal component analysis of the seismic response 
A version of the time integration algorithm proposed by Gravouil and Combescure, [14] enhanced 
to LLM framework, [12], was used to simulated the dynamic response of the R-FE partitioned 
model defined in Section 2.2 subjected to seismic load. In this case, loading vectors ۴ேሺݐሻ and 
F௉ሺݐሻ are defined as, 
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where the subscripts indicate a generic subdomain ݈  and T௔೒
ሺ௟ሻ is a Boolean vector defined according 

to the direction of the seismic acceleration ܽ ௚ሺݐሻ. Then, Principal Component Analysis (PCA) was 

applied to a dataset X corresponding to the deformational component of the PS calculated in with 
Eq. (3), 

X ൌ ൣu෤ଵ
௉,௥ … u෤௡

௉,௥൧	 (8)
 
The key idea of PCA is to provide a separated representation of a number of correlated variables 
considering a smaller number of uncorrelated variables while preserving the overall process 
variance. An orthogonal transformation to the basis of the eigenvectors of the sample covariance 
matrix is performed, and the data are projected onto the subspace spanned by the eigenvectors 
corresponding to eigenvalues sorted in descending order, [15]. This transformation decorrelates 
the signal components and maximizes the preserved variance. In detail, for any real (m x n) matrix 
X there exists a real factorization called Singular Value Decomposition (SVD) that can be written 
as, 

X ൌ UΣV் (9)
 

where U is an (m x m) orthonormal matrix whose columns	u௜, namely the left singular vectors, 
represents the Proper Orthogonal Modes (POMs) while V is an (n x n) orthonormal matrix, whose 
column vectors v௜, namely the right singular vectors, represent the time modulation of the 
corresponding POMs. Σ is an (m x n) pseudo-diagonal and semi-positive definite matrix with 
singular values ߪ௜ as diagonal entries. Singular values relate to the eigenvalues of the 
autocovariance matrix of the process X as, 
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where μଡ଼ is a matrix of repeated vectors of time averaged values of X. Since gravity (constant) 
loads are excluded, μଡ଼ is almost null and thus very small compared to	X. Accordingly, the original 
data set X can be reconstructed up to the desired degree of approximation by retaining a reduced 
number ݍ ൏ ݉ of POM, 
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The energy fraction carried by the ݅-th POM is defined as ܧ௜ ൌ ௜ߪ	

ଶ ⁄ܧ 	is, considering a total data 

energy	ܧ ൌ 	∑ ௜ߪ
ଶ௠

௜ୀଵ . Figure 7 reports the energy fraction of the first ten POMs. 



 
Figure 7: Distribution of POM energy. Figure 8: POM #1 deformed shape. 

As can be appreciated from Figure 7, the almost total energy of the deformational component of 
the displacement response of the PS is carried by the first POM, which is depicted in Figure 8, 
considering the statically determined constraint setting described in Section 3.1. 

VALIDATION OF THE SUBSTRUCTURING METHOD 
In order to impose piecewise affine displacement fields along subdomain boundaries and reduce 
the number of connected nodes, rigid ISs are applied on both NS and PS boundaries. Figure 9 
depicts the Modified (M)-FE partitioned model of the PMFS including ISs, which was used to 
validate the presented substructuring method. 

 
Figure 9: M-FE partitioned model of the PMFS 

As can be appreciated from Figure 9, both ISs are based on rigid spring and beam elements, which 
enforce affine displacement fields along PS and NS boundaries. In detail, simplified coupling 
conditions neglect continuity of vertical and horizontal shear along the vertical and horizontal 



edges of the PS interface, respectively. As a result, the number of coupled DOFs is reduced to 4. 
The system of coupled equations of motion of the M-FE partitioned model read, 
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where subscripts N,I and P,I refer to numerical and physical ISs, respectively. The static response 
of the modified partitioned model was calculated with a version of the FR algorithm, [13], 
enhanced to LLM framework. The following time history restart analysis was calculated with a 
version of [14], enhanced to LLM framework, [12]. Figure 10 compares the displacement response 
of DOF 196-X and DOF 196-Y obtained from the R-FE and M-FE partitioned models. 

a b 
Figure 10: Displacement response of for M-FE partitioned model: a) DOF 196-X; and b) 

DOF 196-Y 

As can be appreciated from Figure 10, the M-FE partitioned model accurately reproduces both 
horizontal and vertical displacement responses of the R-FE partitioned model. Figure 11 depicts a 
possible experimental setup for the PS. 



 
Figure 11: Experimental setup 

As shown in Figure 11, rigid frames, anchors and connecting rods form the physical IS and impose 
an affine interface displacement field to the PS, which is tested in statically determined 
configuration. Load cells installed on actuators and supports measure restoring force feedbacks. 

CONCLUSIONS 
This paper presented a new substructuring method for performing hybrid simulation of planar 
masonry structures, which are characterized by distributed physical and numerical subdomain 
boundaries. Rigid interface super-elements are introduced to impose affine displacement fields at 
subdomain boundaries with a reduced number of connection degrees-of-freedom, which allows 
for reducing the number of actuators of the relevant experimental setup. In detail, rigid beam and 
link elements forms the NS interface super-element while steel frames, anchors and connection 
rods form the PS interface super-element. The numerical validation of this procedure is illustrated 
for a planar masonry facade system, which is virtually substructured using a typical three-actuator 
test setup for quasi-static cyclic testing of masonry wall specimens. 
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