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ABSTRACT 
This paper presents a finite element scheme that combines the smeared and discrete crack 
approaches to simulate the behavior of reinforced masonry shear walls under in-plane lateral 
loads. The smeared crack elements are used to capture the crushing and diffused cracking of 
masonry, while the zero-thickness interface elements are employed to allow the development of 
discrete dominant cracks along the bed and head joints, as well as in the concrete masonry units. 
The proposed scheme has been evaluated with experimental data obtained from tests of two 
fully-grouted reinforced masonry shear wall specimens. The material parameters have been 
calibrated with data from material tests and data available in the literature. The comparison of the 
numerical results obtained from the finite element analyses and the experimental data indicates 
that the finite element models can simulate the failure patterns of their experimentally tested 
counterparts including crushing and the development of shear and flexural cracks. The finite 
element model can also capture reasonably well the initial stiffness, the peak resistance, and the 
residual strength of the specimens. 
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INTRODUCTION 
Reinforced masonry structures are constructed from a variety of materials including concrete 
masonry units (CMU), mortar, grout and steel reinforcement. The interaction and nonlinear 
response of these materials to seismic loads makes the analytical modeling of the performance of 
such structures rather challenging. A variety of techniques have been used to model the behavior 
of reinforced masonry structures [1-4], with different levels of accuracy. Most commonly, 
researchers have used smeared crack elements to model the masonry walls. However, the use of 
these elements has some limitations that can affect the results of the analysis. The most common 
limitation is the stress-locking problem [5] caused by the unrealistic kinematic constraint 
introduced by smeared crack elements. As a result of stress locking, smeared crack elements are 
unable to capture the brittle behavior of an actual specimen following the development of shear 
cracks. Hence, the analysis can lead to unconservative results. Moreover, the use of smeared 
crack elements is associated with an issue known as mesh-size sensitivity [6,7]. To circumvent 
these deficiencies in models of similarly brittle materials such as concrete, researchers have used 
the discrete crack approach in conjunction with the smeared crack approach [5,8]. 



In this study, a similar approach has been adopted to develop a finite element modeling scheme 
to simulate the performance of reinforced masonry shear walls under lateral loads. The proposed 
model combines the smeared and discrete crack approaches to allow the development of discrete 
and diffused shear and flexural cracks. The scheme has been evaluated with data obtained from 
tests of two fully-grouted masonry shear walls conducted at the Washington State University 
(WSU) [9] as a part of a collaboration research project including researchers from University of 
California San Diego (UCSD) and University of Texas (UT) at Austin as well. The comparison 
of the experimental and numerical results indicates that the models can predict well the initial 
stiffness, peak load, and residual strength. The models can also capture the failure patterns of the 
physical specimens. 
  
FINITE ELEMENT MODELING SCHEME 
The modeling scheme proposed in this study for the reinforced masonry shear walls is presented 
in Figure 1. As shown in the figure, each CMU is modeled as a module discretized in two main 
segments. Each segment consists of four triangular smeared crack elements that are inter-
connected with four diagonal interface elements. Moreover, horizontal and vertical interface 
elements representing bed and head joints surround the module and are used to connect the 
module to the adjacent CMUs. As a result, discrete cracks can develop at angles of 0°, 90°, and 
±θ where θ depends on the unit geometry. For the dimensions of the typical units, θ is 45°; 
hence, the interface element can represent diagonal shear cracks. In the actual units, the two 
segments are connected with the web that is unlikely to crack. However, a vertical interface 
element is used in the model. This element could be eliminated, but it is used here to maintain 
the consistency of the modeling scheme across the height of the structure. The element is 
calibrated so that it has high stiffness and it remains elastic at all times. 
 

Figure 1: Proposed finite element scheme for reinforced masonry walls.  
 

As shown in Figure 1, each flexural and shear reinforcing bar is equally divided into four truss 
elements attached to interior nodes of the triangular smeared crack elements. This arrangement 
permits the placement of steel reinforcement at locations similar to those in the actual structure. 
Moreover, this arrangement ensures that the right amount of flexural and shear reinforcement is 
crossed by all possible discrete cracks. 



CONSTITUTIVE MODEL FOR SMEARED-CRACK ELEMENTS 
The smeared crack model used in this study was developed by Lotfi and Shing [1] and it has 
been implemented in the Finite Element Analysis Program (FEAP) [10]. For the uncracked 
material, the model adopts an elastic-plastic law based on the von Mises yield criterion and an 
associated flow rule. This is combined with a Rankine-type tension cut-off criterion. As 
illustrated in Figure 2(a), a parabolic function followed by an exponential function is used to 
relate the effective stress,	ߪ, to the effective plastic strain, ߝ and define the strain 
hardening/softening behavior. The von Mises criterion is expressed as: 
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where ܬଶ is the second invariant of the deviatoric stress tensor.  
Cracking due to tension is initiated when the maximum principal stress reaches the tensile 
strength, ௧݂

ᇱ, as illustrated in Figure 2(b). Subsequently, cracks are assumed to initiate in the 
direction normal to the direction of the maximum principal stress. The material model then 
adopts an orthotropic material law to simulate the nonlinear behaviors in tension and 
compression. In this model, the axes of orthotropy, t-n, are fixed and they are normal and 
tangential to the direction of the crack. As shown in Figure 2(c), an exponential decaying curve 
is used to model the softening behavior in tension. The compressive behavior of the cracked 
material is expressed as a parabolic function followed by an exponential function, shown in 
Figure 2(d). The plasticity and orthotropic laws need to be consistently calibrated to allow a 
smooth transition from the former to latter model upon crack initiation. More information about 
the constitutive models can be found in [1]. 

     

(a) (b) 

(c) (d) 
Figure 2: Smeared crack constitutive model: (a) effective stress-vs.-effective plastic strain 
relation for plasticity model, (b) failure surface for plasticity model, (c) tensile behavior of 

orthotropic model, and (d) compressive behavior of orthotropic model. 



DILATANT INTERFACE MODEL 
The interface model used in this study is an elastic-plastic model developed by Lotfi and Shing 
[2]. This model is implemented in FEAP as a four-noded, zero-thickness, isopararametric line 
element, which is illustrated in Figure 3(a). The constitutive model uses a cohesive crack 
formulation and simulates Mode-I and Mode-II fracture, as well as the mixed-mode fracture due 
to the interaction of axial and shear stresses. The model accounts for the shear dilation, which is 
often observed in laboratory tests and can be important for the simulation of the shear response 
of a confined crack. To model fracture, the following hyperbolic yield function is used: 
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in which ߤ is the slope of the asymptote of the hyperbola; ݏ is the tensile strength; and ݎ is the 
radius of the yield surface at the vertex of the hyperbola shown in Figure 3(b). The variable 
ݍ ൌ ሼs ݎ ݍ describes the evolution of the yield surface with	ሽ்ߤ ൌ ሼs ݎ  ሽ் definingߤ
the initial yield surface, while ݍ ൌ ሼ0				ݎ  ሽ் defines the final state. A non-associated flowߤ
rule with the following plastic potential is used to limit the excessive dilation: 
 
ܳሺσ, ሻݍ ൌ ଶ߬ߟ െ ሺݎ െ ሻሺσݎ െ  ሻݏ (3)
 
in which η is a parameter scaling the shear dilatation. 

 

   

(a)                                                (b) 

Figure 3: Isoparametric interface element: (a) geometry and (b) hyperbolic yield criterion.
 
CALIBRATION OF MATERIAL MODELS 
The calibration of the model should be done in a consistent manner. To this end, one can first 
calibrate the interface elements. As illustrated in Figure 1, there are three groups of interface 
elements in the model including the vertical elements inter-connecting the two segments of the 
CMU, the diagonal elements inside each segment, and the horizontal and vertical elements 
connecting the different CMU units. The first group of elements coincides with the CMU webs. 
Since no cracking is anticipated in these locations, the strength or thickness of these elements 
should be large enough to ensure these elements remain elastic and that they do not affect the 
structural behavior. The second group of elements are used to allow the development of diagonal 



cracks in the CMU units while the last group of elements can simulate cracks in the bed and head 
joints around the masonry units. In fully grouted walls, the crack behavior for these two groups 
of elements would be dominated by the grout. Hence, the difference in strength between cracks 
propagating through the masonry units and cracks propagating at the location of the joints can be 
ignored for simplicity given the lack of data that can allow the exact estimation of this 
difference. As a consequence, the same material properties are assigned to both types of cracks. 
 
Since the interface elements represent cracks, they should have no or small influence on the 
structural behavior prior to cracking. Therefore, they are elastic with a high stiffness. However, 
the stiffness should not be too high to make the model numerically ill-conditioned [8]. One can 
assess the influence of these elements on the structural behavior by comparing the compressive 
behavior of one segment from Figure 1 to that of a single quadrilateral element of the same 
overall dimensions. Tests to assess the tensile properties of masonry are difficult to conduct. In 
the absence of test data, the tensile strength of masonry, ௧݂

ᇱ, can be assumed to be 10% of the 
compressive strength of prism [11]. The post cracking behavior of the masonry can be defined by 
determining the Mode-I and Mode-II fracture energies, ܩ

ூ and ܩ
ூூ. Estimating the Mode-II 

fracture energy is difficult. However, it has been found [14] that assuming G
୍୍ ൌ 10G

୍ can 
provide satisfactory results and this relation is used in this study. One should also define the 
parameters ݍ ൌ ሼs ݎ ݍ ሽ் andߤ ൌ ሼ0 ݎ  ሽ் that define the initial and final yieldߤ
surfaces, and the parameter η that scales the dilatancy. Experimental data from shear tests on 
grouted masonry are not readily available; hence data from mixed-mode fracture tests for 
concrete have been used to calibrate these parameters in this study [15].  
 
With these assumptions one can calibrate the behavior of the interface element. The tensile 
properties of the smeared-crack elements can be then calibrated using the stress-displacement 
curve of the interface model as a reference. To compare the curves obtained by the two models, 
one can convert the tensile strain obtained from a smeared-crack element to displacement by 
means of a characteristic length. For constant strain triangular elements, which are used in the 
proposed scheme, the characteristic length can be assumed to be equal to the square root of the 
element area [16]. For the calibration of the compressive behavior of smeared-crack elements, 
data obtained from compressive tests of grouted prisms can be used. Since the model uses both 
plasticity and orthotropic models, one can first calibrate the orthotropic model by defining the 
parameters f’m, ε1, and ε2, and then calibrate the plasticity model accordingly to ensure a smooth 
transition from the latter to the former upon crack initiation. 
 
VALIDATION OF THE MODELING SCHEME 
The proposed scheme is used to model two fully-grouted, cantilever reinforced masonry shear 
walls subjected to in-plane cyclic loads. The two specimens considered here were part of an 
extensive experimental program conducted at Washington State University [9]. Figure 4 
illustrates the typical test setup and specimen details. The walls were constructed of CMUs with 
nominal dimensions of 203×203×406-mm (8×8×16-in). The walls were reinforced for flexure 
with No.4 bars placed vertically every 203mm (8 in.) on center. The shear reinforcement was 
also placed every 203mm (8 in.) on center and included 180° hooks at each end that were placed 
around the extreme flexural reinforcement in accordance with 2008 MSJC Building Code 
Requirements for Masonry Structures [17]. In the specimens, flexural reinforcement was spliced 
at the wall base with 406 mm (16 in)-long lap splices according to MSJC Code requirements of 



the walls. Since the MSJC splice requirement were met in the experimental tests, it is assumed 
that the perfect transfer of the tensile stresses along the height of the splice exists. Hence, for 
simplicity, in the models, splice is treated as only one reinforcing bar instead of a combination of 
starter bar and the longitudinal bar. Additional details on the design and testing of the walls can 
be found in [9]. Two reinforced concrete beams were placed at the top and bottom of the 
specimens to apply the lateral and vertical loads, anchor the vertical reinforcement, and also 
attach the specimens to the strong floor. The design details for the two masonry walls used for 
the model validation are summarized in Table 1. 
 

(a) (b) 
Figure 4:   Details of: (a) specimen design and (b) test setup. 

 
The two specimens are modeled using the proposed scheme shown in Figure 1. Since no cracks 
are expected to develop in the concrete beams at the top and bottom of the wall, these are 
modeled with four-noded linear elastic elements for computational efficiency. In the absence of 
data for the Mode-I fracture energy,	ܩ

ூ, of the fully grouted masonry, one can estimate its value 
using available data in the literature for concrete of similar strength. Such data for concrete 
mixes of different strengths can be found in [12] and [13]. Hence, considering the average 
compressive strength of 20.96 MPa (3.04 ksi) for the grouted prisms [9], the Mode-I fracture 
energy,	ܩ

ூ, is assumed to be 140 N/m (0.0008 kips/in). The Mode-II fracture energy is 
accordingly calculated by assuming ܩ

ூூ ൌ ܩ10
ூ [14]. The values of the material parameter used 

for calibration of the interface and smeared-crack elements simulating the behavior of masonry 
are summarized in Table 2. The calibrated curves for the smeared crack and interface elements in 
tension and compression are illustrated in Figure 5. The steel was modeled as elastic-perfectly 
plastic with yield strength of 453.3 MPa (65.75 ksi). 
 

Table 1: Specimen design details and material properties. 
 

Specimen 
Wall Dimensions, H ൈ L 

mm (in) 

Axial Load Ratio 

(



ᇲ 

) 

Flexural

Reinforcement * 

mm (in) ** 

Shear 

Reinforcement * 

mm (in) 

݂
ᇱ , 

MPa  

(ksi) 

4  1626 ൈ 1845		ሺ64 ൈ 715 8ൗ ሻ	 .ଶହ  #ସ@ ଶଷ ሺ଼ ሻ  #ସ@	ଶଷ	ሺ଼	ሻ  20.96 

 (3.04) 6  1219 ൈ 1845		ሺ48 ൈ 715 8ൗ ሻ  .ଶହ  #ସ@ ଶଷ ሺ଼ ሻ  ሺଶሻ #ସ	@	ଶଷ	ሺ଼	ሻ 
*   The average yield strength for #4 reinforcement is 453.3 MPa (65.75 ksi). 

** Diameter of #4 bar is 12.7 mm (0.5 in). 



 

Table 2: Material parameters for interface and smeared crack elements. 

Smeared‐crack    Interface element 

݂
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 MPa 

(ksi) 

ଵߝ  
 

 ଶߝ
 

  ܦ  

GPa/m 
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N/m
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ߤ ߤ
	ݎ
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(Ksi)	

	ݎ
MPa 

(Ksi)	

ߟ

29.6  

(3.04) 
0.004  0.0049 

  1764 

(6500) 

2.96 

(0.304) 

140 

(0.0008) 

1400 

(0.008) 
1  0.7 

0.34 

(0.05) 

0.034 

(0.005) 
0.6 

 

 

(a) (b) 
Figure 5:  Calibration of smeared crack and interface elements: (a) compressive behavior;  

 (b) tensile behavior. 
 
NUMERICAL RESULTS  
Although the test specimens were subjected to a cyclic loading sequence, monotonic analyses 
have been used in this study to model the behavior of the walls. Furthermore, since the geometry 
of the test specimens is symmetric, a single analysis is used to represent the structural 
performance in both loading directions. The load-vs.-displacement curves obtained from the 
finite element analyses are compared with the experimental results in Figure 6. 

 
(a) (b) 

Figure 6:  Experimental and analytical lateral load-vs.-drift curves: (a) Specimen 4;  
(b) Specimen 6. 

-600

-400

-200

0

200

400

600

-135

-90

-45

0

45

90

135

-1.5 -1 -0.5 0 0.5 1 1.5

L
at

er
al

 L
oa

d,
 k

N

L
at

er
al

 L
oa

d 
, K

ip
s

Drift, %

Experiment

Analysis

-668

-501

-334

-167

0

167

334

501

668

-150

-100

-50

0

50

100

150

-2.5 -1.25 0 1.25 2.5

L
at

er
al

 L
oa

d,
 k

N

L
at

er
al

 L
oa

d 
, K

ip
s

Drift, %

Experiment

Analysis



Specimen 4  
The load-vs.-displacement curve obtained from the finite element model of Specimen 4 matches 
well the experimental one, as shown in Figure 6(a). More specifically, the model captures the 
initial stiffness, the peak load, and the drift at peak load, but overestimates the residual strength 
in both directions. Figure 7 shows the deformed shape and the damage patterns of the analytical 
model and the test specimen failure patterns at 1.35% drift. The reinforcement is not shown in 
the figure to enhance its visual clarity. The crushing of a smeared-crack element is denoted by an 
“X,” and the cracking by a line reflecting the crack orientation. The length of these lines 
corresponds to the extent of crushing or crack opening respectively. The behavior of the 
specimen was dominated by flexure with small levels of shear cracking in the bottom three 
courses. In the specimen, at the instant of peak load, all of the tensile vertical reinforcement at 
the base of the wall experienced yielding that confirms the model results. Moreover, the model 
captures the toe-crushing of the walls, as well as the diffused flexural cracks in the windward 
side of the walls and the diagonal shear cracks observed in the bottom courses of the test 
specimen. 
  

 

(a) (b)

a   

(c) (d)
Figure 7: Failure patterns for Specimen 4: (a) laboratory specimen at the end of test 

and (b) analytical model deformed shape a lateral drift of 1.35% drift; c) toe crushing 
of specimen; d) close-up of the analytical model. 
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Specimen 6 
The load-vs.-displacement curves obtained from the finite element analysis are compared with 
the experimental results in Figure 6(b). As shown in the figure, the numerical model matches the 
behavior of the specimen in the negative direction very well. However, the response of the 
specimen is not symmetric; hence, the model tends to overestimate the strength of the specimen 
in the positive direction in terms of residual strengths. Moreover, the drifts at the peak load and 
the onset of toe crushing obtained from the analysis are smaller than those obtained from the 
experiment. Moreover in the model at the instant of peak load, all the rebars located the base of 
the wall experienced yielding that confirms with the experimental test data obtained from strain 
gages attached to the rebars. Figure 8 shows the deformed shape from the analytical model and 
the test specimen failure patterns at 2.00% drift which was the largest drift imposed on the 
specimen during the test.  In the experimental test, the wall behavior was dominated by flexure, 
but diagonal shear cracks were observed in every course. This behavior was accurately captured 
by the finite element mode as demonstrated in Figure 8(b). 
 

(a) (b) 

(c) (d) 
Figure 8: Failure patterns for Specimen 6: (a) laboratory specimen at the end of test;  

(b) analytical model deformed shape a lateral drift of 2.00% drift; (c) close-up of the toe 
crushing and cracking of Specimen 6; (d) close up of the toe crushing and cracking of the 

analytical model. 
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CONCLUSIONS 
This paper presents a finite element scheme that combines the smeared and discrete crack 
approaches for modelling the behavior of reinforced masonry shear walls. The model is 
calibrated with a rigorous procedure using test data and data available in the literature for 
concrete of similar strength. The proposed modelling methodology has been used to simulate the 
performance of two fully grouted masonry shear walls tested in the Washington State University. 
The comparison of the numerical and experimental results indicates that the models are able to 
accurately predict the failure patterns of the specimens. The introduction of the zero-thickness 
interface elements to the modelling scheme eliminates potential numerical issues that models 
with smeared crack elements only could face. Moreover, the scheme allows the precise 
modelling of the steel reinforcement with discrete bars that are the same locations as in the actual 
specimens.  
 
In terms of the predictive capabilities, the finite element models capture not only the crushing at 
the bottom corners of the walls, but also the development of flexural and shear cracks throughout 
the wall. Moreover, the models predict well the initial stiffness and peak load of the walls. 
However, the predicted values for the residual strength slightly differ from the experimental tests 
values. This can be expected considering the highly nonlinear behavior of the walls, the lack of 
experimental data for the calibration of the material models, and the non-symmetric behavior of 
Specimen 6. Material tests on masonry assemblies would be very useful in producing data for the 
more accurate calibration of the numerical models. 
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