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ABSTRACT 
The present paper focuses on the application of the yield line method to estimate the pressure 
bearing capacity of laterally loaded masonry walls. The characteristics of the function of bending 
moment coefficient are given first to assess the results of numerical analysis and the proposed 
methods in literature. The shortcomings of applying the yield line method on masonry are 
discussed and a proposal for the possible modifications is given, based on the length of the first 
crack. The numerical simulation has been performed to follow the progression of cracks up to the 
point of collapse. Primarily, two kinds of masonry walls have been considered through the study: 
(a) Masonry walls which show no crack through the units, and (b) Masonry walls which show 
cracks through the units. The numerical results have been compared with the proposed 
modification on yield line method to give a clear explanation of the behaviour and to determine 
the critical factors that influence the pressure bearing capacity. 
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INTRODUCTION 
The behaviour of two-way bending of masonry walls is one of the most challenging and ill-
understood problems in the field of masonry. Although several attempts have been devoted to 
understand out-of-plane behaviour and to estimate the pressure bearing capacity, the state of art 
in the field is still unsatisfactory and many problems have to be explained and clarified. 
Several experimental studies on laterally loaded masonry walls have been reported in literature 
Johansen [1], Haseltine [2], Hendry [3], Hendry et al. [4], West et al. [5], Lawrence [6], Baker 
[7] and Van der Pluijm [8]. The studies have been showed that the development of crack pattern 
at failure is similar to yield line pattern in reinforced concrete slabs. Some empirical formulas are 
proposed to estimate the pressure capacity, but there is no general and clear explanation for the 
obtained results. 
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The similarity of the failure pattern in masonry walls and reinforced concrete slabs has been 
driven to apply Johansen’s yield line method to laterally loaded masonry walls. Haseltine [2] and 
Anderson [9] proposed to calculate pressure bearing capacity by yield line method, in which the 
orthogonal ratio μ , is taken as being equal to the flexural strength ratio of the masonry, provided 
that, flexural strength values are taken from wallette test as established by West et al. [5]. The 
yield line method has been first introduced in form of tabulated moment coefficients, for the 
purpose of friendly design procedure in British standard BS 5628 [10], and later in Eurocode 6 
[11]. 
The following formulas are given in Eurocode 6 to calculate the moment resistance of masonry 
walls subjected to uniform pressure W : 
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Where ,  are the moment resistances in directions perpendicular and parallel to bed joints 
respectively. The bending coefficient
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where the characteristic flexural strength of masonry when the plane of failure parallel to the 
bed joints and the characteristic flexural strength of masonry when the plane of failure 
perpendicular to the bed joints. 
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Later on, many investigations have confirmed that the yield line method is unsafe for most cases 
and overestimates the pressure bearing capacity. So far, there is no theoretical justification for 
applying the method to a brittle material. One modification introduced by Sinha [12] to account 
the orthotropic stiffness which enhanced the correlation with the experimental results. 
The test observations reported by Baker et al. 2005; Drysdale and Hamid, 2005, (referenced in 
Maluf et al.[13]) regarding neglecting the moment at the first crack, have led to some 
modifications on yield line method, which have introduced in Canadian Code CAN-CSA 
S304.1-04 [14]. However, the principle which used to find the moment coefficients is 
underestimating the capacity for aspect ratios far from one even beyond the moment coefficients 
of one way bending. This is a result of ignoring the dissipated energy along the first crack. 
According to limit lo
(static) value of the ultimate load (s. [17]). If a load can be found which is safe and statically 
permitted and the number of full plastic moments (or line moments) leads to a failure chain, than 
the determined limit load is the actual one ([17]). The assumed failure chain is that which really 
will occur. How it was shown in [17] (p. 229, tab. 6.2) for an isotropic, simply supported plate,  
the lower bound and the upper bound falling together in case of easy yield lines or they are lying 
very narrow to each other.   Here the exact determination of the yield or failure line figure can be 
done by the help of the equilibrium equations and the application of the maximum principle (see 
[19], p. 30). That can be assumed in case of lateral loaded masonry panels.    

 



The intention of the present paper is to verify the capability of the yield line method to estimate 
the pressure bearing capacity of masonry walls as well as to give a clear description for two 
bending behaviour of masonry walls. The investigation is performed on four side supported walls 
(case E in Eurocode 6), where the principles and the methodology can be extended to the other 
support conditions. 
 
PROPERTIES OF α2 FUNCTION 
To assess the results of this study and the methods proposed in literature, the characteristics of 
the function α2 are considered. 
By assuming two masonry walls  and  of dimensions 1P 2P 1hl ×  and 2hl ×  and have the same 
units and joint properties, which indicate the equality of flexural orthotropy for both walls, 
Figure 1: 
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Since both walls have the same length l , the pressure bearing capacity of wall  should be not 
less than that of wall : 
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The moment resistance for both masonry walls are: 
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1P  and  built from the same material and have the same thickness. The moment resistances  2P

 
therefore are equal . This gives: )()( 2212 PMPM =
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By considering the inequality in pressure bearing capacity (4) then 
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Mathematically this can be written as 
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The above expression means that, the function 2α  is monotonically non-decreasing for constant 
flexural orthotropy. 
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Figure 1 α2 bending coefficient function with the upper bound 

 
The upper bound of α2 coefficient can be found by considering the moment coefficients of one-
way bending, in directions parallel and perpendicular to bed joints. 
In direction parallel to bed joints 
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In direction perpendicular to bed joints 
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Consequently, the upper bound of 2α  values is 
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THE CRITICAL ASPECT RATIO 
There is a point on the curve of 2α  function, at which no first horizontal or vertical crack would 
appear. The aspect ratio at this point can be defined as the critical aspect ratio . For masonry 
walls which have aspect ratio equal to the critical aspect ratio, the cracks propagate 
simultaneously in both directions, which would result in form of diagonal cracks. The value of 
the critical aspect ratio for walls of equally flexural strengths and equally stiffness is equal to 1. 
However, for most masonry walls, the strength and the stiffness in direction parallel to bed joints 
are higher than that in direction perpendicular to head joints. This could shift the value of the 
critical aspect ratio far from 1 as the orthotropic properties are varying. 

crr

 
SHORTCOMINGS OF THE YIELD LINE METHOD & POSSIBLE MODIFICATIONS 
Yield line method as first proposed by Johansen [1], is based on the work-equilibrium, where the 
internal virtual work equals the external virtual work. It is needed to calculate several crack 
patterns and to use the lowest value of collapse pressure. 
Yield line method supposes equal moment resistances over yield lines prior to collapse. 
However, for brittle or quasi-brittle materials, all possible lines of failure are experienced some 
damage prior to collapse. The moment resistances along the yield lines are not equal, and they 
change as the cracks propagate. 
For possible use of yield line method, it can be applied over several phases of crack propagation. 
Each phase needs to calculate the dissipated energy and the work applied by external pressure. 
However, to simplify the calculation scheme only two phases are considered: 
 

1- The propagation of the first horizontal (vertical) crack, 
2- The propagation of the diagonal cracks. 

 
To apply the yield line method, it would be feasible to focus on the phase of failure, when the 
cracks are appearing simultaneously in both directions, parallel and perpendicular to bed joints 
(or as diagonal cracks). Therefore, the yield line method can be applied in the second phase, and 
here there are principally two aspects affect the results: 
 

1- The moment resistance over the yield line are reduced due to damage, this can be 
included in the formulation by introducing a reduction factor κ  into the moment 
resistance at the first crack. 

2- Due to that damage, the energy produced by the applied pressure is also reduced after 
dissipation, however such factor can be ignored if the length of the first crack is small in 
comparison to the diagonal cracks. The ignoring of this factor would result in 
underestimation of the pressure capacity for aspect ratios far from one. The error resulted 
by ignoring this factor can be observed in Canadian code approach. 

 
ADOPTION OF THE YIELD LINE METHOD TO MASONRY 
In order to get an explanation of two-way bending behaviour of masonry based on the first crack 
length, the first aspect is only implemented in the following formulation. The obtained results 
have maintained by employing the properties of α2 function. 
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Figure 2 The calculation scheme for laterally loaded masonry walls based on the 
modified yield line method 

 
At failure the potential energy E exposed by loads moving must equal the energy dissipated in 
yield lines rotating D, this states: 

(14) 
DE =  

 
The potential energy E exposed by loads moving is: 
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The dissipation of energy within the yield lines can be calculated by introducing a reduction 
factor κ  into the first crack energy, so that, the length at which the moment resistance vanishes 
is llc ⋅−= )21(⋅ βκ  
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By substituting the rotation angels 
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By equating the potential energy E and the internal dissipated energy D gives 
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the value of β  should be determined for minimum pressure, or 
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Solving for β  
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The same procedure can be applied to derive the equations for aspect ratios higher than  crr
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When 1=κ  ⇒ 2α  is identical with EC6 and BS 5628 which are based on traditional yield line 
method. When 0=κ  ⇒ 2α  is identical with Canadian Code CAN-CSA S304.1-04 [14], which is 
based on zero-moment assumption at the first crack. 
 
NUMERICAL SIMULATION 
The intention of numerical simulation is to follow the progression of cracks up to the point of 
collapse. An accurate procedure has been employed for modelling based on the results of Bakeer 
[15] which developed for collapse analysis of masonry structures. Mainly two kinds of masonry 
walls are considered through the numerical simulation: (a) Masonry walls which show cracks 
through the units. The material of masonry units is brittle (eg. walls of Autoclaved Aerated 
concrete units). A deletion of the failed finite elements was performed, to visualize the 
propagation of cracks, and (b) Masonry walls which show no cracks through the units. The 
material of masonry units has high tensile strength and the failure occurs only at the joints (e.g. 
walls from Calcium silicate units)  
The modelling of masonry walls have been carried out using LS-DYNA software and an explicit 
transient analysis has been performed. The pressure has been applied increasingly up to collapse, 
so that, the post failure behaviour can be captured after initial cracking. The principles can be 
found in Bakeer [15], however, what is necessary to focus on in this context are the crack 
patterns obtained by numerical analysis. The capability of the numerical tool has been verified 
with the available empirical data on lateral loading of masonry, Figure 3. 

 



               
(a)                                                                                     (b) 

Figure 3 Crack pattern of autoclaved aerated concrete masonry wall with dimensions 
6 x 3 x 0.175 m, (a) the tested wall, Jäger et al. [16], (b) the numerical simulation 

EXPLANATION OF NUMERICAL RESULTS BASED ON κ FACTORS 
At the beginning of loading the distribution of moments within the wall depends on the aspect 
ratio and the stiffness orthotropy only, but not on the flexural orthotropy ratio μ.  
The moment ratio  at the beginning of loading in case of isostiffness is equal to . 
The wall, therefore, starts to develop moments in the 1st direction higher than that in the 2nd 
direction. In masonry walls which have 

21 / MM 2/1 r

1≤μ  the moment resistant in 1st direction less than the 
moment resistant in 2nd direction. This leads to develop the first crack along the bed joints. The 
progression of the first crack increases until the moment ratio  reaches the value of μ. 21 / MM

μ = 0.846
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Developing of cracks, zero-moment at the 
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Figure 5 Crack patters of aerated concrete masonry walls, the zero moment at the first 
crack is observed in both cases when the first crack parallel or perpendicular to 

the bed joints. 
 

The results of numerical simulation can be classified into two groups: 
 
(a) Masonry walls which show failure in units (e.g. autoclaved aerated concrete units) 
At the beginning of loading, an initial crack has been observed for all aspect ratios, and the 
pressure bearing capacity has been fitted well with the curve ( 0=κ ). The crack propagation 
through the units in all directions and for all aspect ratios, make masonry wall behave similar to a 
slab of homogenous material, Figure 4 and Figure 5. The numerical results also are close to the 
solution provided by elasticity theory, as a result of the brittle failure. The brittle failure can be 
achieved by very small increase of the applied pressure after the initial cracking. Therefore, it is 
reasonable to consider the pressure at the initial crack as the pressure bearing capacity of the 
wall, which can be calculated from elasticity theory. 
 
(b) Masonry walls which show no failure in units (e.g. calcium silicate units) 
Several walls with flexural orthotropy ratios 0.745, 0.622 and 0.257 are considered. The 
comparisons of the numerical results with the results of different methods are presented in 
Figures 7, 8 and 9. The first crack observed clearly along the bed joints at the middle of the wall 
for long walls, but for high walls there is no possibility for the first crack to be propagated 
through the units Figure 6.  

Aspect ratio of the wall =2 

Developing of cracks, zero-moment at the 
first cracked line 

Aspect ratio of the wall =0.5 
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Aspect ratio of the wall =0.5 

Figure 6 The mechanism of failure for Calcium silicate walls  

No zero-moment at the first 
cracked line 
Aspect ratio of the wall =2 

 
The factor κ  gives good representation for the length of the first crack, for aspect ratios less than 

 the numerical results tend to be up or close to the curve crr 0=κ , and for aspect ratios higher 
than  the numerical results tend to be between the curves crr 1=κ  and 5.0=κ . 
So far, modified yield line method considers only the flexural properties of the material. 
However, the stiffness orthotropy K  has significant influence on the pressure bearing capacity, 
especially for small flexural orthotropy. Another shortcoming can be recognized when the curves 
of the modified yield line method cuts the upper bound of 2α  function. As mentioned before, 
this has caused by ignoring the term of energy dissipated at the first crack. 
The curves which represent the elasticity solutions in Figures 7, 8 and 9 show good agreement 
with the numerical results but they do not meet the conditions of monotonically non-decreasing 
property and the upper bound of 2α  function, particularly for small flexural orthotropy. The 
elasticity results are obtained for isostiffness walls, which is indeed not true for masonry. 
Masonry walls which have higher flexural strength in some direction are always accompanied 
with higher stiffness in that direction. By including the stiffness orthotropy K  in elasticity 
method, the results can meet the conditions of 2α  function. 
The yield line method gives critical aspect ratio of μ  while the strip method gives critical 

aspect ratio of 
μ
Krcr = . For elasticity theory Poisson ratio has an effect on this value. 
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CONCLUDING REMARKS AND FUTURE RESEARCH ASPECTS 
Masonry is quasi-brittle material. Beside the results of the present paper, several remarks in 
literature mentioned that yield line method is unsafe for most cases to be applied for masonry. 
The proposed modified yield line method in this paper is based on the length of the first crack. In 
Canadian standard, the length of the first crack has been handled in the same way for long walls 
and high walls. However, the calculation of the first crack length is related basically on the 
aspect ratio of the wall, the flexural orthotropy and stiffness orthotropy. The introducing of κ  
factor into the first crack length has enabled to explain the crack patterns obtained in numerical 
analysis. The proposed modifications on yield line method are not accurate without including the 
stiffness orthotropy, and it is recommended to include the stiffness orthotropy in the design 
procedure in form of K/μ  ratio. 
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