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ABSTRACT 
This paper presents a comparison between experimental and numerical analysis of concrete 
block small walls (Wallets) under compression loads. The main goal of the study is to simulate 
the behavior of the walls based on the behavior of blocks and mortar joints using a numerical 
non-local damage model specially developed for quasi-brittle materials. First, blocks and mortar 
specimens are submitted to compression tests in order to evaluate damage parameters values. 
Then, Wallets built with the same blocks and mortar are also tested to evaluate their behavior. 
All tests are carried out with displacement control in order to obtain the complete load-
displacement diagram for the specimens: the initial linear behavior, the failure load and the post-
peak softening regime. After the experimental program, numerical models are developed for 
analyzing blocks, mortar specimens and Wallets. Eight-node brick finite elements with secant 
stiffness matrix are used and the load is applied by displacement control, achieving the complete 
load-displacement diagram. Obtained results show that the non-local damage model considered 
in this paper is able to predict not only the load and the displacement at the failure point but also 
the softening in the post-peak regime of the Wallets. 
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INTRODUCTION 
Damage numerical models can be pivotal to evaluating the non-linear behavior of some 
structural elements. When assessing brittle materials, damage-based procedures may be 
indispensable to simulate the medium loss of rigidity due to micro-cracks formation, which can 
lead it to failure. Kachanov [1] was perhaps the first to have mentioned the damage concept as it 
is currently known. Another important contribution can be ascribed to Rabotnov [2], who 
proposed a damage variable that could be used to reduce initial rigidity and the strength of the 
material. Recently, after the formalization of the so-called Continuum Damage Mechanics 
(Lemaitre and Chaboche [3]), the development of this research field was quick and varied. It is 
noteworthy that for this study the damage mechanics applied to brittle materials, for instance 
structural masonry, is especially important. 
 



About the importance of the study presented here, it is worth highlighting that some codes, for 
instance the new Brazilian masonry code, adopt the structural masonry strength based on small 
walls (also called Wallets) strength. Therefore, the numerical evaluation of the Wallet behavior 
based on its components behavior, units and mortar, is a very interesting way to obtain important 
information about the masonry behavior itself. Obviously, if this knowledge is obtained based 
only on experimental results for the masonry components this procedure will save a significant 
amount of time and money. 
 
 
EXPERIMENTAL PROGRAM 
The experimental program was accomplished at the Department of Structural Engineering of 
University of São Paulo (USP). The tests were carried out both on masonry components, blocks 
and mortar specimens, and on Wallets built with the same components. 
 
The hollow concrete blocks had a nominal strength of 4.5 MPa and the dimensions were 140, 
190 and 390 mm (width, height and length), Figure 1a. The cylindrical mortar specimens 
dimensions were 50 and 100 mm (radius and height), Figure 1b. Two mortar mix proportions, in 
volume, were considered: 1:0.5:4.5 (Type ii of BS 5628 1992 [4]) and 1:1:6 (Type iii of BS 5628 
1992 [4]). 

.   
Figure 1: Components: a) Concrete blocks; b) Mortar specimens 

 
All the axial compression tests for components and Wallets were performed in order to obtain 
the complete force-displacement curve for the specimens, in other words, the behavior of the 
specimens from the initial loading stage until the complete failure of the material. Therefore, a 
hydraulic servo-controlled press under displacement control at 1 μm/s was used. Despite the fact 
that the press had an internal displacement control, four additional devices for displacement 
measurement (LVDT) were also used in all the performed tests, see Figure 2. 
 

 
Figure 2: Additional devices for displacement measurement: a) Block; b) Mortar specimen; 

c) Wallet 



In order to characterize the units, eight concrete blocks were tested. From the obtained load-
displacement diagrams it was possible to define a representative behavior for the units. Figure 3 
demonstrates all of the obtained results for the blocks and the adopted block diagram that will be 
used for all the numerical Wallet models, as can be observed in details in a following section.  
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Figure 3: Load-displacement diagrams for the units 

 
Six Wallets were tested under axial compression. Three of them were built using the BS 5628 
type ii mortar and the other ones with the type iii mortar. For all of the Wallets the mortar bed 
joint was 10 mm thick. The complete load-displacement diagrams were obtained for all the 
Wallets in order to facilitate comparing them to those obtained numerically. The obtained 
diagrams are presented in a following section, where the numerical and experimental results are 
compared. 
 
It is worth noting that for each tested Wallet a mortar specimen was taken to be considered 
representative of the Wallet mortar joint. Each one of those mortar specimens was also tested in 
order to obtain the complete load-displacement diagram. Those diagrams will be used to obtain 
the damage parameters for the mortar, which can be seen in detail in a following section. In fact, 
the cylindrical mortar specimen prepared in a steel mould does not capture the in-situ properties 
of the mortar bed joint. However, this type of specimen was adopted because it is a standard test 
and one of the aims of the present research project was the validation of the proposed procedure 
considering only standard tests for the masonry components. 
 
 
DAMAGE MODEL 
The numerical analysis performed in the present paper is based on a damage model procedure 
originally developed by Papa and Taliercio [5]. This model was adapted by Ramalho et. al. [6] 
and implemented in the FEAP® program [7]. The obtained local damage procedure is reliable 
and efficient for evaluating the stress-strain behavior from the initial loading stage until the peak 
load of the structural element, especially when it is submitted to loadings in which the 
compression is the main effect. 



However, the numerical local damage procedure, considering brittle materials under a non-
constant strain field and using finite elements analysis, usually leads to a strong strain 
localization. It means to obtain spurious results and strong mesh sensitivity (Jirásek [8]). 
Typically, the inelastic strains are concentrated in an element or in narrow bands of elements, 
whereas the major part of the structure is nearly unstrained. As a consequence, it is impossible to 
evaluate the complete load-displacement diagram, especially for the softening region, i.e. from 
the peak load to the complete failure of the material. 
 
Considering these numerical problems, the damage procedure was changed and a non-local 
damage model based on a strain averaging procedure was implemented. In this case the strains at 
each point are calculated by means of a weighted averaging over a spatial neighborhood of the 
point (Ramalho et al. [9]). 
 
Obviously, it is not the main goal of this paper to discuss in detail the damage model used in the 
numerical analysis. However, some of the model’s features are explained in order to show the 
main parameters that should be considered. Hence, it is important to mention that the damage 
phenomena are macroscopically taken into account through a symmetric, second-order tensor D. 
In finite form, the nonlinear stress-strain law of the material reads: 
 
ε = C(D) σ                  (1) 
 
where C(D) is the fourth-order flexibility matrix of the damaged material that depends on the 
damage tensor D.  
 
The eigenvalues and the normalized eigenvectors of the damage tensor will be denoted by Dα 

and nα (α = I, II, III), respectively. Any one of the planes of damage-induced orthotropy is 
somehow associated to a plane micro-crack that forms in the solid. Once any damage direction is 
activated, its orientation is supposed to remain fixed throughout the rest of the stress history. 
 
The damage process driving variable is supposed to be an equivalent strain measure, y = ½ ε2. As 
the maximum eigenvalue of y attains a critical value; y0T or y0C, according to the sign of the 
associated strain; the first damage direction (nI) is activated. An additional damage direction, nII, 
can be activated in the plane orthogonal to nI if the maximum direct component of y, that is, yhh 
= nh⋅(y⋅nh), with nh ⊥ nI, attains the damage threshold. The third possible damage direction is 
necessarily nIII = nI ∧ nII. 
 
Neglecting creep-induced damage, each principal value of the damage tensor is supposed to 
evolve according to the law: 
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Here, 〈*〉 are McAuley brackets and AH, BH and CH are material parameters, which take different 
values according to the sign of the strain component that activates damage (H=T for tension; 
H=C for compression). 



It is worth mentioning that in the initial stages of the loading, before any damage direction is 
activated, the material can be considered as elastic-linear and in this case the Young’s modulus 
and the Poisson coefficient are also necessary. 
 
Besides the local damage parameters, it is also pertinent defining the spatial neighborhood of the 
point so that is possible to consider the non-local damage procedure. This spatial region is 
usually a sphere, characterized by its radius. In this paper its radius is adopted as the smallest 
value for which the numeral procedure does not present strain concentration, i.e. mesh 
dependency effects.  
 
Basically there are two procedures to verify the event of strain concentration in the analysis. 
First, the load-displacement diagram presents a clear discontinuity just after the peak load. 
Second, the number of iterations increases suddenly for the load step just after the load peak and 
sometimes it is not even possible to reach the convergence value. On the other hand, if the strain 
concentration phenomenon is not present, then the load-displacement diagram does not present 
any discontinuity and there is not a significant difference between the number of iterations for 
the several load steps of the analysis. 
 
 
DAMAGE PARAMETERS 
Initially, finite element meshes were assembled for the concrete block and the mortar specimens, 
Figure 4. Displacements were restrained according X, Y and Z axes, both at the top and at the 
bottom of the meshes, while the displacements that simulated the test loading scheme were 
applied parallel to the Z axis at the top of the model. Four-noded tetrahedra finite elements were 
adopted for the mortar specimens meshes while eight-noded hexahedra finite elements were used 
for the block mesh. The number of elements was 663 and 1608, respectively, for the mortar 
specimens and for the block. 
 
The Young’s modulus (E) and Poisson coefficient (ν) were adopted taking only into account the 
obtained values of the experimental program for each component. However, the damage 
parameters Ac, Bc and Cc, see Equation 2, were evaluated so that the numerical diagram of a 
component, block or mortar specimen, would be as similar as possible to the experimental load-
displacement diagram obtained for the same component. Note that for the block the adopted 
block diagram, shown in Figure 3, was considered, while the six mortar specimens had their own 
diagram to be considered. 
 

 
 

  
Figure 4: Finite element meshes: a) Mortar specimen; b) Block 



After assessing the local damage parameters it was possible to evaluate the spatial neighborhood 
radius (rnl) for considering non-local damage. As previously described, in this paper this radius 
was considered as the smallest value for which the numeral procedure does not present strain 
concentration. 
 
Table 1 presents the obtained parameter values for the block and the mortar specimens used to 
build the Wallets. It is relevant to mention that the mortar specimens M1, M2 and M3 can be 
classified as type ii and specimens M4, M5 and M5 were type iii (BS 5628 1992). Additionally, 
it is also important to highlight that the mortar specimen “Mi” was representative of the bed joint 
of the Wallet “Wi”.  
 

Table 1: Damage parameters for components 
 

 
Parameter 

 
Block 

Mortar 
M1 M2 M3 M4 M5 M6 

E (N/mm2) 6700 5660 3400 3150 3530 4410 3500 
Ac 8.75E+09 9.68E+04 2.62E+05 1.86E+05 2.15E+05 1.44E+05 1.84E+05 
Bc 2.00 0.87 1.00 1.00 1.00 0.90 1.00 
Cc 1.00 1.00 1.20 1.30 1.00 0.90 1.00 
y0 1.0E-15 1.0E-10 

rnl (mm) 150 30 
ν 0,20 

 
In order to exemplify the appearance of the experimental and numerical diagrams, Figure 5 
illustrates the obtained results for the block and Figure 6 presents the results for the mortar 
specimens. The numerical diagrams were obtained using the parameters shown in Table 1 and 
they will be used to model the Wallets presented in the following section. 
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Figure 5: Load-displacement diagram for the representative block 
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Figure 6: Load-displacement diagrams for the mortar specimens 

 
 
OBTAINED RESULTS FOR THE WALLETS 
The assembled mesh for the Wallets had 8908 eight-noded hexahedra finite elements and is 
shown in Figure 7. The parameters shown in Table 1 for the block and the respective mortar 
were used to model each Wallet. Similarly to the mortar specimen and the block models, 
displacements were restrained according X, Y and Z axes, both at the top and at the bottom of 
the meshes, while the displacements that simulated the test loading scheme were applied 
according to the Z axis at the top of the model. 
 



 
 

 

 

Mortar 

Block 

Figure 7: Finite element mesh for the Wallets 
 
Table 2 shows the maximum loads and displacements at maximum load obtained through the 
numerical model and the experimental program for all the tested Wallets. In this table it is 
possible to see that the numerical and experimental values are in fact quite close for most of the 
cases, presenting a maximum difference of 26.4% between the foreseen numerical value and the 
measured experimental value. However, for the Wallets W1, W3, W4 and W6 the values were 
almost identical, with the difference between experimental values and numerical foreseen around 
5%. When the average values are considered the difference between numerical and experimental 
values is only -2.2%. Table 2 also shows the displacement at the maximum load. In this case it is 
possible to observe that the foreseen obtained by the numerical procedure is always less than the 
obtained experimental values. The maximum difference is 35.9% for the Wallet W4, while for 
the Wallet W5 the difference is only 2.2%. The average difference is also quite good, 14.4%. 
 

Table 2: Maximum load and corresponding displacements for the Wallets 
 

 
Small 
Wall 

Maximum Load Displacement at maximum load 

Num 
(kN) 

Exp 
(kN) 

Diff. 
% 

Num. 
(mm) 

Exp. 
(mm) 

Diff. 
% 

W1 509.3 530.8 -4.1 2.00 2.48 -19.4 
W2 512.6 696.4 -26.4 2.00 2.21 -9.5 
W3 613.0 580.3 5.6 2.50 2.68 -6.7 
W4 509.4 480.9 5.9 1.25 1.95 -35.9 
W5 441,2 380.0 16.1 1.75 1.79 -2.2 
W6 414.5 398.4 4.0 1.75 2.03 -13.8 

Average 500.00 511.13 -2.2 1.88 2.19 -14.4 
 
Another significant point to be highlighted is the aspect of the obtained load-displacement 
diagram from the initial loading stages until the complete failure of the Wallets. Figure 8 shows 
the mentioned diagrams obtained by means of experimental program and numerical model for 
the six tested Wallets. It is possible to deduce that the aspect of the numerical and experimental 



diagrams is similar for most of the Wallets. For some of them, for instance Wallets W2, W3, W5 
and W6, the aspect is almost identical. 
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Figure 8: Numerical and experimental load-displacement diagrams for the Wallets 

 
 
CONCLUSIONS 
The main conclusion is that considering only the parameters obtained by means of the 
experimental program for its components, i.e. blocks and mortar specimens, it was possible to 
evaluate numerically the behavior of the Wallets under compression with good accuracy. 



Actually, the used non-local numerical model is able to predict different stages of the load-
displacement diagram, from its elastic-linear stage until the complete failure of the material. 
Especially the maximum compressive load and its correspondent displacement can be evaluated 
with reasonable precision, demonstrating that the proposed numerical procedure is efficient and 
reliable to model structural masonry under compression.  
 
Based on the obtained results, it seems clear that the described numerical procedure can be used 
to evaluate the strength of the structural masonry provided the behavior of the block and the 
mortar are known in advance. 
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