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ABSTRACT 
 
The authors take again a very simple formulation for determining the load collapse multiplier for 
masonry structures, by a linear formulation founded on classical limit analysis theorems. To 
draw the model as close as possible to the real collapse mechanism, it is now supposed that 
failure lines can also form along the diagonals of macroblocks, so introducing even triangular 
elements into the discretization process. Moreover, to underline the influence that the modality 
of the texture of bricks or stones has on the behaviour of a panel, the friction coefficient tgφo 
used for the horizontal interfaces is suitably increased along the diagonal and vertical interfaces 
of the macroblocks.  
 
KEYWORDS: limit analysis, macroblocks, triangular elements, friction coefficients 
 
 
INTRODUCTION 
Our research examines the safety of masonry panels in the presence of seismic forces through the 
theorems of limit analysis. Walls are shaped as systems of rectangular or triangular rigid 
macroblocks and are studied in the case of middle plane forces, with the assumption that on 
interfaces between the blocks there is inability to carry tension, unlimited compression resistance 
and sliding with dilatancy. The analysis of the mechanical behaviour of a masonry structure with 
the above-mentioned assumptions has been the subject of a rich literature. Recently the problem 
has also been dealt with through nonlinear programming, by supposition of not associated 
frictional sliding [1, 2].  
 
We have presented an alternative to the above-mentioned procedures - often too expensive and in 
any case unable to guarantee the uniqueness of the solution [3]. The simple method proposed is 
founded on the static theorem of limit analysis, and makes use of Excel’s solver to fix the load 
collapse multiplier for masonry structures. The first results obtained were in accordance with the 
ones achieved by other researchers.  
 
Here, the same formulation is re-proposed with the aim of improving the results just achieved for 
masonry walls. Therefore, to draw the models as close as possible to the real collapse 



mechanism, it is now supposed that failure lines can also form along the diagonals of 
macroblocks, so introducing even triangular elements into the discretization process. Moreover, 
to underline the influence that the modality of the texture of the bricks or stones has on the 
behaviour of a panel, the friction coefficient tgφo used for the horizontal interfaces is suitably 
increased along the diagonal and vertical interfaces of the macroblocks.  
   
THE EQUILIBRIUM CONDITION FOR THE SINGLE BLOCK 
We will refer to a generic plane masonry panel, discretized by rectangular or triangular large 
blocks (Figure 1).  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 
 
The contact forces N, T, M on the interfaces are supposed to be applied at the centroid of each 
interface. 
 
Therefore every block is generally subject to resultants N, T, M on the interfaces and to the dead 
and horizontal live loads applied at the centroid of the same block (P is the self weight of the 
block). 
 
The equilibrium equations of a generic rectangular or triangular block can be briefly expressed 
with the form: 
 
Ae Xe + Fv

e  + α Fo
e = 0                                                         Equation 1 

 
where “e” is the element’s index, Ae

 is a matrix (3x12) or (3x9) for the rectangular and  
triangular elements respectively, depending on the dimensions of the block, Xe

 is the vector of 
the unknown stress resultants on the interfaces, Fv

e is the vector of the dead loads and αFo
e the 

vector of the horizontal live loads, with α being an unknown multiplier. 
 
YIELD DOMAIN FOR THE GENERIC INTERFACE 
The stress resultants on the interfaces have to respect the yield domains of the material for 
sliding and rocking (Figures 2a, 2b). 
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Figure 2 – a) Limit surface for sliding; b) Limit surface for rocking 
 
Having supposed an unlimited compressive strength, four conditions have to be imposed on 
every generic interface; in the matrix form they are: 
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Di Xi ≤ 0 Equation 3 
 
where ϕ is the generic angle of friction (ϕο, ϕv, ϕd refer to horizontal, vertical or diagonal 
interfaces respectively) and l is a generic length of the interface (b, h, d  in Figure 1). 
Particularly, in the case of diagonal interface, the analysis of a block formed by two triangular 
elements, subject to dead weight and horizontal live loads, shows that the more suitable values of 
the friction coefficient tgφd have to be not lower than tgφd* = (1+sin2β)/(sinβ cosβ), 
corresponding to the failure due to sliding and rocking on the diagonal (Figure 3).  

 
 
 
 
 
 
 
 
 

 
Figure 3 
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GOVERNING CONDITIONS 
If n and m are the numbers of blocks and interfaces, the equilibrium conditions are: 
 
A X + Fv  + α Fo = 0 Equation 4 
 
and the yield domain’s conditions are: 
 
Y = D X ≤ 0 Equation 5        
 
where A is a (3n x 3m) matrix, X is a 3m-vector, Fv and Fo are 3n-vectors, α is the unknown 
collapse multiplier, D is a (4m x 3m) matrix.  
 
In operating terms it is better to split X into two sub-vectors X1 and X2, where the second 3 (m-n) 
sub-vector collects the “hyperstatic” unknowns. The introduction of diagonal lines in the 
rectangular blocks does not increase the number of these unknowns. 
 
Consequently, the problem can be formulated in the following manner:   
maximize α 
subject to 
 
A1 X1 + A2 X2 + Fv + α Fo = 0 Equation 6                    
 
Y = D1 X1 + D2 X2  ≤ 0 Equation 7  
 
α ≥ 0 Equation 8 
 
with A1 being a (3n x 3n) invertible matrix; or better, the problem can be reformulated in the 
unknowns X2 and α only, as:  

maximize α 
subject to 
 
Y = D'X2 - Do α - Dv ≤ 0 Equation 9 
 
α ≥ 0 Equation 10 
 
being:    D' = D2 – D1A1

-1A2  ,     Do = D1A1
-1Fo ,     Dv = D1A1

-1Fv . 
 
THE EVALUATION OF THE COLLAPSE MECHANISM 
When the unknowns α and X2 have been defined, we can pursue the kinematic problem. The 
unknowns of this problem are: 
- the vector u which collects the degrees of freedom (i.e., three in the centroid of every block, for 
the structure discretized (Figure 4a)); 
- the vector ∆ which collects the displacements between the interfaces (i.e., three for every 
interface (Fig.4b), formed by sub-vectors ∆1 and ∆2 respectively corresponding to sub-vectors X1 
and X2 ); 



- the vector λ which collects the generalized strain rates associated to the yield conditions (i.e., 
four for every interface (Figures 2a, 2b)). 
 
 
 
 
 
 
 
                                             (a)                            (b) 

Figure 4 - a) The degrees of freedom for a block; b) The displacements between the 
interfaces 

 
These unknowns are bounded by kinematic conditions: 
 
AT u = ∆ Equation 11 
 
and by the flow rule 
 
∆ = DT λ Equation 12 
 
These, opportunely split, give: 
 
A1

T u = D1
T λ 

 Equation 13 
 
A2

T u = D2
T λ Equation 14 

 
If we invert Equation 13 and we put the vector 
 
u = (A1

T)-1 D1
T λ Equation 15 

 
in Equation 14 we have the kinematic conditions in the unknowns λ alone: 
 
(A2

T (A1
T)-1D1

T –D2
T) λ = 0 Equation 16 

 
or  
 
M λ = 0 Equation 17 
 
with M = A2

T (A1
T)-1D1

T – D2
T. 

 
Equation 17 can be simplified opportunely if we consider only the unknowns λi ≠ 0 
corresponding to the yield condition Yi = 0 in Equation 9; so we obtain the solution as function 
of an arbitrary parameter, and the collapse mechanism by vector u in Equation 15. 
We have also pursued this solution and its collapse configuration making use of Excel. 
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APPLICATIONS 
To compare our results with those obtained - using linear and nonlinear programming - by other 
authors, we have analyzed three walls without (Figure 5a) and with openings (Figures 5b and 5c) 
already studied in [1, 2], having constant thickness, discretized in elements of size 4 x 1.75, and 
with friction coefficient 0.65. The computational results are reported in Tables 1, 2 and 3.  
 
                                                                                                                                            
 
 
 
 
 
 
 
 
 
 
                  Figure 5a                                  Figure 5b                              Figure 5c 
 

Table 1 - Panel Figure 5a 
 Matrix A 

dimensions 
LP 
α 

NLP 
α 

 
N°

    
mesh 

Matrix A 
dimensions 

tgϕd=tgϕd* 
tgϕv=ktgϕo 

 
α 

 
Ferris ... 

[1] 

 
55 x 141 

 
0.58 

 
0.557

 
1a  

 
6 x 6 

  
0.57 

 
Baggio... 

[2] 

 
55 x 141 

 
----- 

 
0.545

 
1b  

 
27 x 45 

k=1 
k=1.5 
k=3 

0.50 
0.56 
0.65 

     
1c 

  
54 x 72 

k=1 
k=1.5 
k=3 

0.31 
0.34 
0.52 

 
Table 2 - Panel Figure 5b 

 Matrix A 
dimensions 

LP 
α 

NLP 
α 

 
N
° 

    
mesh 

Matrix A 
dimensions 

tgϕd=tgϕd* 
tgϕv=ktgϕo 

 
α 

 
Ferris ...  
     [1] 

 
46 x 102 

 
0.37 

 
0.31 

 
2a 

 

 
24 x 33 

 
k=1.5 
k=3 

 
0.35 
0.45 

 
Baggio... 

[2] 

 
46 x 102 

 
----- 

 
0.35 

 
2b

  
48 x 57 

 
k=1.5 
k=3 

 
0.17 
0.24 

     
2c 

  
27 x 36 

 
k=1.5 
k=3 

 
0.35 
0.41 

6 64 4 4 4 4 4 

5.25 

5.25

8.75 

20 

17.5 



 
Table 3 - Panel Figure 5c 

 Matrix A 
dimensions 

LP 
α 

NLP 
α 

 
N°

    
mesh 

Matrix A 
dimensions 

tgϕd=tgϕd* 

tgϕv=ktgϕo 
 

α 

 
Ferris ... 

[1] 

 
55 x 116 

 
0.33 

 
0.26 

 
3a 

 
39 x 57 

 
k=3 

 
0.27 

 
Baggio... 

[2] 

 
55 x 116 

 
0.32 

 
----- 

 
3b 

  
45 x 63 

 
k=3 

 
0.25 

 
In Figures 6, 7 and 8, the collapse mechanisms of examples 1c (k=3), 2a (k=1,5) and 3b (k=3) 
are illustrated, being k an amplifier coefficient of tgφo. 
 

 
 

Figure 6 - Example 1c  
 

 
 

Figure 7 - Example 2a 



 
 

Figure 8 - Example 3b 
 

CONCLUSIONS 
Owing to the results obtained with the formulation proposed, we observe that in modelling 
masonry panels with rigid rectangular macroblocks, it is necessary to assign a value of the 
friction coefficient tgφv on the vertical interfaces higher than the value of the friction coefficient 
tgφo used for the horizontal interfaces, to take into account the modality of the texture of bricks 
or stones. 
 
For walls without openings the introduction of diagonal lines, that is the modelling in rigid 
triangular macroblocks, leads to a considerable reduction in value of the multiplier α, even if we 
assign a value of the friction coefficient tgφd not lower than tgφd* on the diagonal interfaces. 
However, the above-mentioned reduction is very small if we only increase further the value of 
friction coefficient tgφv on the vertical interfaces.  
 
Besides, for walls with openings the introduction of diagonal lines must be limited to the 
macroblocks above the openings only, as the examples into Tables 2 and 3 show. 
Finally, the formulation proposed, is very simple because it involves few variables - the 
unknowns “hyperstatics” only. The formulation is suitable for determining the load collapse 
multiplier for masonry panels, as showed from the computational results that appear to be in 
good agreement with those achieved by other more sophisticated formulations. 
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