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ABSTRACT 
Assessment of the load displacement curve for masonry walls is a key ingredient in all the safety 
verification formats for seismic analysis. Available numerical methods for the largest part use a 
spatial discretization based on a  finite element representation in term s of beam, membrane or 
shell elements. In order to include the basic features of the masonry material, nonlinear plastic or 
damage constitutive models can be selected. It is however well known that rich constitutive 
models require an inc reasing number of constitutive parameters, which usually are h ardly 
assessed in practice. Moreover,  heterogeneous masonry textures do not allow  experimental 
testing on small specimens so that data can be only inferred from nondestructive techniques. 
 
In fact, the real safety analyses p erformed in engineering offices rarely  exit from the standard 
Mohr-Coulomb plasticity model [1, 2]. If the biaxial crushing failure is not included in the model 
through a  cap closure,  some problems could em erge from the interaction of the flexural and  
shear collapse modes. In particular, the for mation of a diagonal resisting strut in panels acted on 
by overturning forces could produce a shear over strength due to a biaxial compression state. 
 
By using standard rules evaluating the shear resi stance of cracked sections it is however possible 
to check nonlinear load displacement curves in order to detect premature shear failures along the 
flexural response curve. By this  way it is possible to build up response cu rves which include 
shear failure and reduced ductility even if the finite element software has only basic plasticity 
options. The com parison of various wall m odels allow a better understandi ng of the lim its of 
advanced nonlinear packages in the field of masonry behaviour under combined loading. 
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INTRODUCTION 
Textured brick m asonry walls can  be viewed as a com posite material encompassing brick 
inclusions dispersed in a m ortar matrix. It is  however very difficult to tackle masonry bod y 
problems with a m icro structural level analys is, unless only a representative sm all volume is 
investigated. 
 
In general, in order to grasp the m ain features of the masonry nonlinear behaviour, an “ elasto-
plastic in compression and brittle in tension” constitutive law must be adopted. A suitable choice 
is to consider a Mohr-Coulo mb plasticity for the homogenized masonry material, although 
perfect plasticity deviates from real behaviou r in com bined stress s tates [3]. If the wall is 



composed of slender co lumns and lintel beam s, the 2D problem can be rearranged in term s of 
stress resultants of given sections . In this way, a true no tension material is considered, but the 
link between norm al stress and shear stress states  is weakened, sin ce, in term s of stress 
resultants, the two verification procedures have no link in term s of combination of limit stress 
states [4, 5]. Therefore, if a non-linear stress co mbination is available from  the analysis, the 
constitutive law itself results in a combined verification form at, else if we com pute non-linear 
bending and shear resistances in terms of stress resultants, the two verifications decouple. 
 
However, even the very basic Mohr-Coulom b plasticity without cap clos ure has deficiencies 
when shear is acting on heavily compressed sections, since the bi axial compression at the toe of 
inclined thrust lines results in an incorrect bearing resistance. This can happen when the breadth 
of a wall is large in comparison with its vertical shear arm. 
 
In the paper a m ore precise verification proced ure is set up by linking bending resistance and 
shear resistance by means of the effective co mpressed area. In particular, the wall force 
displacement curves leading to lim it bending and shear resistances are plotted against th e top 
section displacement, directly identifying if the critical verificatio n is for overturning or sliding 
mechanisms. Finally, by equating the limit resistances of a generic wall, the characteristic aspect 
ratio of the wall is identif ied, which separates the flexural collapse zone and the shear collapse 
zone. It turns out that this param eter is depe ndent even on the type of verification for mula 
adopted for shear forces, so that no unique critical height can be defined. 
 
 
FORCE DISPLACEMENT CURVE FOR A CANTILEVER WALL 
In experimental test results, it is evident that there is a continuous stiffness reduction of masonry 
panels caused by a concurrent application of constant normal force and an increasing shear force. 
This fact points out a strong ge ometrical effect due to the defor mation component, i.e. a m ore 
than linear increase of the local curvature with respect to the external action. 
 
The key point of the represented problem  is the definition of the boundary between the 
compressed and the inactive zones. As it is well known [6, 7], the volume of the structure is only 
the container of the real structure which is the s ubset in equilibrium with compressive stresses 
only in the assumption of a no-tension material. 
 
With reference to a rectangular wall of width L, thickness t and height H, clamped at its base and 
acted on by shear and pressure at  its top, we consider the differe nt limit states in the m ain 
sections of the panel during the shear increase. 
 
The constitutive relationship for the masonry has been studied extensively on wall specim ens 
and columns [5, 8-10]; for simplicity reasons and in agreement with experimental results [11], in 
this analysis a simple no-tension and elasto-plastic in compression law is assumed. In practice, it 
means fixing three parameters: the limit strength fk, the plastic strain y, and the ductility index D 
= u /y (figure 1). 
 
The analysis of the cantilever wall is fully deve loped in [8]. Since the bending moment is known 
as a f unction of shear force, and th e compressed zone results f rom equilibrium, the curvatur e 



diagram of the p anel can be o btained in an  analytical form. Finally, by direct indefinite 
integration, the horizontal displacement is obtained as an analytical function of the applied shear. 
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Figure 1: Elastic plastic representation of compression in masonry 
 

In what f ollows, a very  simple treatment is reported only for docum entation purpose. Let us 
define: 
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Where L is the panel length and N is the total normal force corresponding to the applied pressure 
summed up with the panel weight. 
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a) fully elastic                         b)  cracked elastic                      c) elastic  - plastic 

 
Figure 2: Equilibrium configurations of the masonry panel under compression and shear 

 
In the deformation process after passing the elastic range, the active zone of the panel is a subset 
of the width L in the strip b eneath the sectio n where the moment is raised up to the lim it 



decompression value (figure 2.b). At the onset  of plastic situation, by indicating with t the wall 
thickness, the moment and the shear hold: 
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By integrating the curvature, the displacem ent and the rotation at the boundary between the 
cracked and elastic zones in the wall are obtained. Finally the displacement for z = 0 is computed 
by kinematical composition of the elastic and cracked terms. Given: 
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the displacement is expressed in simplified form as a function of  and : 
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The top displacement is evaluated as a function of the top shear: 
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At the end of the loading process, the base section reaches the highest normal force eccentricity 
until the outer fibre deformation arrives at the ultimate strain of the constitutive law (figure 2.c), 
which can, for instance, be set as u = 0.003 with a ductility index around 1.5 [11].  
 
Equilibrium and com patibility requirements fix unambiguously the sha pe of the stress blo ck; 
thus, we can compute exactly the width of the compressed zone u and the ultimate curvature: 
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By considering the curvature increment in the  basement strip hpl as a concen trated plastic 
rotation, the contribution at failure of the plastic hinge to the top displacement is: 
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2u u y pl plh H h      . (7) 

 
The shear displacement path in the plastic range ( y uV V V  ) is given by the formula: 
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EVALUATION OF SHEAR LIMIT DUE TO SHEAR FAILURE 
The shear resisted by  flexure can b e incompatible with the shear resis tance of the compressed 
zone; in that case collapse by shear sliding is taking place. In particular the resisting shear stress 
can be expressed as a function of the com pressed zone and the vertical m ean stress; the most 
widely used formulas are defined as a consequence of the Coulomb hypothesis [5, 6]: 
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Where the second formula is due to [12]. Th e resisting shear for ce linked to a reduced 
compressed zone coming out from a given axial force and extern al shear force co mbination, is 
easily calculated as: 
 

, ( ) ( )R V SV N V t     . (9) 
 
The flexural shear resistance VR,M is steadily increasing up until the flexural failure, but for given 
height to length ratio of the wall, it can be greater than the shear sliding force VR,V. In this case 
the load displacement curve must be cut at that last value. 
 
As an example, assum ing that a cantilever wall with the following data is considered : N = 300 
kN, t = 0.3 m, L = 4.0 m, H = 3.0 m, E=1800000.0 kPa,  f mk = 6000 kPa, fmt = fvk = 400 kPa, the 
flexural and sliding shear resistan ce as a func tion of wall displacem ent is plotted in figure 3, 
where the grey line is relative to the Coulomb shear and the black one to the Turnsek Cacovic 
one. 
More precisely, once a com pressed zone length is selected, the overturning equilibrium defines 
the flexural extern al shear; the sh ear value is used in th e top disp lacement calculation, and  a 
shear sliding resistance is evaluated on the basis of the compressed area. 
 

 
Figure 3: Resisting shear forces as a function of the wall displacement – stocky wall 
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As it is clearly v isible, the limit displacement is approximately 0.3% of the height,  well below 
the considered wall limit deformation. However, the consideration of the sliding shear reduces 
this limit by halving the allowed displacem ent, although the reduction in resisting shear force is 
limited. 
If a wall of width L = 2.0 is considered, the pr evious picture would look very different and the 
flexural limit would apply, as highlighted in figure 4. 
 

 
Figure 4: Resisting shear force as a function of wall displacement – slender wall 

 
In order to define the condition which delimits the two types of failure, we can equate the values 
of the combined ultimate limit shear computed by flexural and sliding conditions, and derive the 
height for which the behaviour is changing from ductile to brittle. 
 
If we consider relevant the intersection of the two curves at the fully plas tic stage, it is possible 
to compute the height separating the two fields  of flexural and shear predom inance. The two 
equations are: 
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It has to be pointed out that the smallest compressed zone is defined by: 
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By solving the presented equations the critical height is obtained: 
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In the presented case, the use of the above mentioned formulas leads to an evaluation of the limit 
height of 3.75 m in case Coulomb shear stress is assumed, or 4.5 m in case Turnšek and Cacovic 
shear stress is selected. 
 
It is evident that by the presented procedure is always possible to understand if a given wall wil l 
fail in flexure or shear in order to plan the nonlinear strategy for the push over curve. 
 
 
CONCLUSIONS 
The presented analysis is a very sim ple one but allows understanding if a com pressed masonry 
panel loaded in shear will fail by in plane overturning or sliding shear. 
 
It is very c lear that the main parameter discriminating between the two fi elds is the height to 
length ratio. It is however appa rent from the derived form ulas that even the norm al and shear 
strength enter in the critical height formula. 
 
The presented example illustrates cases in w hich the shear resistance cuts o r does not cut the 
flexural load displacement curve. 
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