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ABSTRACT 
The flexural bond strength of unreinforced masonry (URM) is a key material property affecting 
the wall out-of-plane lateral load capacity. It is well known that the unit flexural bond strength 
(defined here as the flexural strength of the brick to lower mortar bed joint associated with any 
given masonry unit (brick)) varies considerably between units, and that this spatial variability 
might significantly affect the structural performance and reliability of URM walls in flexure. The 
paper develops a computational method to predict the strength for URM walls subject to one-
way vertical bending considering unit-to-unit spatial variability of flexural bond strength. We 
characterise the probability distributions of wall strength and examine how spatial variability in 
unit flexural bond strength affects the variability of first cracking load, second cracking load and 
peak load and behaviour of clay brick URM walls. This is done using 3-D nonlinear Finite 
Element Analyses and stochastic analysis in the form of Monte Carlo simulations. Varying 
COVs (0.1, 0.3 and 0.5) of unit bond strength are considered. The mean and variance of wall 
strength are estimated to show the effect of spatial variability of bond strength on wall strength. 
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INTRODUCTION 
The Australian masonry design code (AS3700-2011) [1] has been in a limit states format since 
1988. Although it is commonly believed that current design models are conservative, the actual 
level of safety of masonry structures is not known. It is unclear how to compare the structures 
designed according to the masonry design codes with the structures designed using other 
materials in terms of reliability (or safety) and whether different masonry walls and other 
structural elements have similar levels of reliability. The problem is compounded by the fact that 
the strength properties of masonry are highly variable, particularly for the unit-to-unit spatial 
variability of flexural bond strength, due to variations in the quality of workmanship, the weather 
during construction, and the materials from location to location, all within one structure. 
However, many existing stochastic analyses of structures assume uniform bond strength in the 
wall, rather than considering the unit-to-unit spatial variability of bond strength, the latter being a 
more realistic approach in examining material variability. In fact, the existence and importance 



of spatial variability in the masonry wall have been observed in past studies. For instance, [2] 
discussed the effects of random variation in the flexural strength of brick work as early as 1976. 
Then [3] and [4] stressed the importance of considering this factor and used Monte Carlo 
techniques to model its effects in analysis. [5] suggested that assuming statistical independence 
of individual unit strengths provides wall capacities consistent with experimental results for 
vertical one-way bending in 1991. [6] measured the statistical parameters of bond strengths by 
the bond wrench test on 19 building sites in Melbourne. These genuine data provided strong 
evidence for the high spatial variability in flexural bond strength. The unit-to-unit spatial 
variability in flexural bond strength was also considered in the masonry reliability analysis by 
[7]. [8] estimated the characteristic masonry strength by taking into account the unit compressive 
strength when doing the masonry analysis calculations, but only in the form of  the measured 
mean and standard deviation of unit strength rather than unit-to-unit spatial variability. In recent 
studies, [9, 10] examined experimentally the extent of spatial correlation between unit flexural 
bond strengths within clay brick walls and recommended that each unit has a flexural bond 
strength that is statistically independent of its neighbours. In addition, random field analyses 
were used to model the performance of geotechnical and structural systems where such systems 
are subject to spatially varying parameters (e.g., [11]) and [12] successfully used random field 
analysis to model the spatial variability of corrosion damage to concrete structures. This, 
undoubtedly, increases the importance, feasibility and rationality of considering the spatial 
variability of bond strength in masonry analyses. 
 
While there have been a number of studies of the effects of variability and workmanship on the 
strength of structural masonry [2, 13-16], very few studies have considered computational 
methods to calculate the structural reliability of masonry structures. However, [7] and [17] 
developed preliminary ‘proof-of-concept’ techniques to estimate the structural reliability of 
masonry walls for vertical one-way bending and compression loading. [7] developed a structural 
reliability model to calculate the probability of failure for masonry walls in flexure, considering 
the unit-to-unit variability of bond strength, and showed the important effect that the unit-to-unit 
spatial variability could have on strength prediction and structural reliability.  
 
The current paper presents a computational method, using 3-D nonlinear Finite Element 
Analyses and stochastic analysis in the form of Monte Carlo simulations, to calculate the 
strength prediction and structural reliability for URM walls subjected to one-way vertical 
bending. It provides statistical evidence to illustrate the significant importance of considering the 
unit-to-unit spatial variability of flexural bond strength by comparing the probability 
distributions obtained from non-spatial and spatial analysis, for the first cracking load (the load 
at which cracking first occurs in the wall), the second cracking load (the load at which tensile 
cracking appears in the midheight region of the wall) and the peak load.  
 
PROBABILISTIC MODEL  
A probabilistic model is generated before the establishment of non-spatial and spatial analysis 
models. In this section, a 3-D non-linear FEA model of a full sized, single leaf clay brick URM 
wall of dimensions 2.5 m × 2.5 m is generated. This sized wall was chosen because it is realistic 
for both the height and length of the wall, and also, based on the context of assuming the load 
redistribution system hypothesis of failure [7], a 2.5 m long wall may have potentially a greater 
chance of a weak joint at which cracking could initiate compared to a wall with shorter length, as 



there are more joints across the length of the wall. The same principle holds true in the height 
direction.  
 
The structural configuration considered here is a single skin infill panel simply supported at the 
top and bonded at the bottom (one-way vertical bending). The boundary conditions for the full 
sized wall model are the same as in many practical situations. That is, the bottom course of the 
wall is bonded by a layer of mortar to an underlying floor or footing, and at the top, the wall is 
restricted from lateral (out-of-plane) displacement but can move in the vertical direction. A 
uniform lateral pressure load is applied over the full face of the wall. 
 
The interface material model used herein is the combined cracking-shearing-crushing model 
[18], also known as the composite interface model. This composite interface model is 
appropriate to simulate fracture, frictional slip as well as crushing along material interfaces [18]. 
The brick units are modelled as linear elastic, while the mortar joints are modelled with interface 
elements, which obey the nonlinear behaviour described by this combined cracking-shearing-
crushing model [19, 20].  
 
The detail of material parameters to be used in the 3-D FEA analysis of the full wall is listed in 
Table 1. The element types and mesh density are summarized in Table 2. 
 

Table 1: Summary of Material Parameters to be used in the 3-D FEA Model 
 
 
 
 
 
 
 
Horizontal and vertical mortar 
joint interface elements 

linear normal stiffness modulus 353 N/mm3 
linear tangential stiffness modulus 146 N/mm3 
tensile bond strength variable 
tensile fracture energy variable 
cohesion 0.65 N/mm3 
tangent friction angle 0.75 
tangent dilatancy angle 0.6 
tangent residual friction angle 0.75 
confining normal stress -1.2 N/mm2 
exponential degradation coefficient 5 
capped critical compressive strength 20 N/mm2 
shear traction control factor 9 
compressive fracture energy 15 N/mm 
equivalent plastic relative displacement 0.12 
shear fracture energy factor 0.15 

 
Expanded brick elements 

brick young’s modulus 20000 N/mm2 
brick’s Poisson’s ratio 0.15 
brick density 1800 kg/m3 

Potential brick cracks (all values 
are artificially high to force 
cracking in mortar joints and not 
brick joints) 

linear normal stiffness modulus 1000 N/mm3 
tangential normal stiff modulus 1000 N/mm3 
tensile strength 2 N/mm2 
fracture energy 0.5 N/mm 

 
In this probabilistic model, the fracture energy is related to the tensile strength by the following 
expression [21]. 
 



0004882.001571.0I  t
f fG                                                                                                      (1) 

 
Table 2: Summary of 3-D FEA Element Type and Mesh Selection for the Full Sized Wall 

 
Element/Mesh Selection 

Brick/Mortar Bodies 
Element Types Mesh Density 

Bricks HE20 CHX60 2×4×1 
Mortar Joints IS88 CQ48I 2×4×1 

Mid-length Brick Interface Element IS88 CQ48I 1×4×1 

 
For a large data set, Normal, Lognormal and Weibull distributions can be used to represent 
brickwork properties [22].  [21] found that the distribution of unit flexural bond strengths for full 
sized clay brick URM walls is best represented by the truncated Normal probability distribution 
and this was adopted for the current study. Based upon an extensive literature review, a mean 
flexural bond strength of 0.4 MPa was selected. The choices of COV being 0.1, 0.3 and 0.5 
encompass those reported in [6] for 19 building sites in Melbourne, and are consistent with the 
observations of [21]. 
 
NON-SPATIAL ANALYSIS MODEL 
The non-spatial analysis model is generated making use of the 3-D non-linear FEA full wall 
model and Monte-Carlo computer simulation techniques. Non-spatial analysis is the scenario 
considering a stochastic analysis with the full sized wall having non-spatially varying unit 
flexural bond strength for each realisation. It means the bond strength is identical for each unit in 
the wall. Many existing stochastic analyses of structures assume this scenario.  
 
The main procedure for non-spatial analysis model generation is as follows. ① Establish the 
expressions describing the relationships between the masonry unit flexural bond strength and the 
wall cracking loads, and between the masonry unit flexural bond strength and the wall peak 
loads, respectively; ②  Generate a random variable as the wall unit flexural bond strength, 
following a truncated Normal distribution, and find the corresponding cracking loads and peak 
load of the wall using the best fit curve interpolation of the non-spatial runs; ③ Repeat step ② 
for 100,000 runs for COV = 0.1, 0.3 and 0.5, respectively; ④ Produce the histograms and 
distributions of wall cracking loads and peak loads for each COV of bond strengths. These are 
presented in Figures 2 and 3. 
 
SPATIAL ANALYSIS MODEL 
Spatial analysis is the scenario considering a stochastic analysis with the full sized wall having 
spatially varying unit flexural bond strengths, assuming that there is no spatial correlation in 
bond strength existing between each unit in the wall.  
 
150 FEA simulations for each COV are deemed as the reasonable number based on the 
convergence check of peak load and COV (see Figure 1). The model considering spatial 
variability of unit flexural bond strength (µft = 0.4 MPa, COV = 0.1, 0.3 and 0.5) is obtained in 
the following way. ① Generate a set of random numbers, as the tensile bond strengths of the 
masonry, following the truncated Normal probability distribution; ② Assign the strengths, and 
the associated fracture energy values according to Equation (1), to horizontal (bed) and vertical 



(perpend) mortar joints in the FEA model. In this process a unique strength is assigned to the 
mortar bed joint along the complete length of each masonry unit (brick) and a unique strength is 
assigned to the mortar perpend joint over the complete height of each unit; ③ Run the FEA 
model and collect its failure progress (i.e., the first cracking load, second cracking load, peak 
load, and load versus deflection curve); ④ Repeat steps ①, ② and ③ for 150 runs. The resulting 
histograms, distributions and load versus deflection curves are shown in Figures 2, 3 and 5. 
 

   
 

Figure 1: Convergence: a) Convergence of mean peak load with increased number of 
simulations; b) Convergence of peak load COV with increased number of simulations 

 
COMPARISON OF NON-SPATIAL AND SPATIAL ANALYSES  
The results, including the first cracking, second cracking and peak loads obtained from non-
spatial and spatial analysis models are compared for the case of mean of 0.4 MPa and COV of 
0.3 in Figure 2. Table 3 shows that the mean values and standard deviations without considering 
spatial variability of unit bond strength (Non-spatial) are 59%, 70%, 4.4% higher, and 50%, 60%, 
77% higher than those obtained from a spatial analysis for first cracking, second cracking and 
peak loads, respectively.  
 

Table 3: Summary of First Cracking, Second Cracking and Peak Loads for Non-Spatial 
and Spatial Analyses µft = 0.4 MPa, COV = 0.3 

 
µft = 0.4 MPa 
COV = 0.3 

Non-Spatial Analysis Spatial Analysis 
Mean (kPa) σ (kPa) COV Mean (kPa) σ (kPa) COV 

First Cracking Load 1.24 0.34 0.27 0.51 0.17 0.33 
Second Cracking Load 1.97 0.55 0.28 0.59 0.22 0.38 

Peak Load 2.27 0.48 0.21 2.17 0.11 0.05 
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Figure 2: Histograms: a) First Cracking Loads; b) Second Cracking Loads; c) Peak Loads 
for Non-Spatial and Spatial Wall Simulations µft = 0.4 MPa, COV = 0.3 

 
This observation is intuitive for the first cracking load. The first cracking load is the load at 
which cracking first occurs anywhere in the wall, so this will occur at a lower wall pressure load 
for the spatial case due to the presence of units of lower than average strength than in the non-
spatial case for which all units have equal strength. When a pressure load is applied to the wall, 
the maximum moment in the wall will develop at the base of the wall initially. For the wall with 
a uniform (Non-spatial) unit tensile strength, the first cracking would always appear in the 
bottom course of masonry. While for the wall with unit-to-unit spatial variability, both the 
moment and the random presence of lower than average unit tensile strengths will determine the 
location that the first cracking occurs (weakest link theory [7]). According to the statistics from 
all the spatial analysis simulations, only 38.7% of first cracking occurs in the bottom course, the 
remaining 61.3% of first cracking takes place elsewhere before the cracking appears in the 
bottom course due to the presence of “weak” joints in the wall, resulting in lower first cracking 
loads, on average, than for the non-spatial simulations. As the first cracking loads in the spatial 
analysis are influenced by the weaker bonds initiating the first cracking, the standard deviation in 
the spatial analysis is also lower than in the non-spatial. The same principle holds true for the 
second cracking and peak loads. 
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It can be seen in Figures 2/c, 3 and Table 4 that ignoring the spatial variability of the unit bond 
strength (Non-spatial analysis) overestimates the mean strength (peak load) of the wall while at 
the same time underestimates the wall strength in the lower tail of the histograms in all three 
cases of COV = 0.1, 0.3 and 0.5. The degree of overestimation of mean and underestimation in 
the lower tail becomes larger when the COV of unit tensile strength increases. As it is the lower 
tail of the histograms which are of most interest during masonry structural design and structural 
reliability analysis, the non-spatial scenario will over design the structure, particularly for large 
values of COV. 
 

  
 

Figure 3: Histograms of Peak Loads for Non-Spatial and Spatial Wall Simulations µft = 0.4 
MPa: a) COV = 0.1; b) COV = 0.5 

 
Table 4: Summary of Peak Loads for Non-Spatial and Spatial Analyses 

 
Bond Strength Non-Spatial Wall Peak Loads Analysis Spatial Wall Peak Loads Analysis 

Mean 
(MPa) 

COV Mean 
(kPa) 

Min 
(kPa) 

Max 
(kPa) 

 σ 
(kPa) 

COV Mean 
(kPa) 

Min 
(kPa) 

Max 
(kPa) 

σ 
(kPa) 

COV 

 
0.4 

 

0.1 2.29 1.55 2.95 0.16 0.07 2.27 2.13 2.37 0.05 0.02 
0.3 2.27 0.34 3.95 0.48 0.21 2.17 1.81 2.51 0.11 0.05 
0.5 2.27 0.34 4.76 0.75 0.33 2.01 1.52 2.32 0.14 0.07 

 
FAILURE MODE COMPARISON 
The failure behaviours of the wall for non-spatial and spatial analysis also differ greatly. Figure 4 
shows two examples of failure behaviours classified by the crack opening width, ignoring widths 
below 0.003 mm. Examining a propped cantilever in linear beam theory, the bending moment at 
the fixed end (the bottom in current case) is greater than the bending moment in the middle area. 
Therefore, when a pressure load is applied to the wall the maximum moment in the wall will 
develop at the base of the wall. For non-spatial (uniform) tensile strength, it is expected that the 
course at the base of the wall will crack first. For the non-linear finite element analyses used in 
the current study, the post peak strength associated with the mortar joints allows the joint to 
continue resisting moment as it softens during which the moment is redistributed to the 
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midheight region of the wall and the total load on the wall is able to further increase. When the 
moment in the wall in the midheight region reaches the moment capacity of the wall cross 
section, cracking occurs at midheight (second cracking) typically over multiple courses (Figure 
4a). For the majority of simulations conducted during the current study second cracking occurred 
prior to peak load but for some of the non-spatial analysis with high unit flexural bond strength, 
the peak load occurred prior to second cracking with second cracking occurring during the post 
peak branch of the load versus wall displacement response. For the chosen example with unit-to-
unit spatial variability, the first cracking occurs in the “weakest link” where the ratio of moment 
to moment capacity (or tensile stress to tensile strength) is greatest at a unit located in the 11th 
course from the bottom of the wall. However, the crack does not develop as the adjacent units 
are strong enough to bear the redistributed load. Then the weaker units in the bottom course 
(where the moment is greater) begin to crack. Before the cracking extends completely across the 
bottom course, cracking in the 16th course from the bottom of the wall and in adjacent courses 
appear before failure. 
 

   
 

Figure 4: Failure Mode for Non-Spatial and Spatial Bond Strength: a) Non-Spatial Bond 
Strength ft  = 0.4 MPa; b) an Example with Spatial Bond Strength (µft = 0.4 MPa COV = 0.3) 

 

    
 

Figure 5: Load Versus Deflections for Spatial Wall Simulations µft = 0.4 MPa: a) COV = 
0.1; b) COV = 0.3; c) COV = 0.5 
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The load versus deflection curves also indicate the progression of wall failures. Figure 5 shows 
the all load versus deflection curves for the spatial analyses for µft = 0.4 MPa and COV = 0.1, 0.3 
and 0.5. None of the curves are the same and they overlap much considering the unit-to-unit 
spatial variability.  
 
CONCLUSION 
A computational method and probabilistic model have been developed to calculate the strength 
prediction for URM walls subject to one-way vertical bending. The probabilistic information in 
this model is unit-to-unit spatial variability of flexural bond strength. A comparison of the first 
cracking loads, second cracking loads and peak loads between spatial and non-spatial analysis 
has been made, showing the importance of considering spatial variability in structural analysis 
for URM walls. It has been found that a non-spatial analysis overestimates the first cracking and 
second cracking loads of the wall, and underestimates the peak load of the wall in the lower tail 
of the distribution of wall strengths compared with a spatial analysis. Also, the failure modes of 
the wall are more realistic for the spatial analysis. 
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