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ABSTRACT 
The masonry under biaxial stress state is the most common case of walls subjected to complex 
systems of in-plane loads. Masonry and especially brickwork is a material, which exhibits 
distinct directional properties because of its anisotropic nature where the mortar joints act as 
planes of weakness. Taking into account the numerous uncertainties of the problem, an analytical 
mathematical model describing the masonry failure surface in a simple manner should be an 
efficient tool for the investigation of the behaviour of masonry structures. To define failure under 
biaxial stress, a three-dimensional surface in terms of the two normal stresses and the shear stress 
(or the two principal stresses and their orientation to the bed joints) is required. This paper 
describes a method to define a general non-dimensional anisotropic (orthotropic) failure surface 
of masonry under biaxial stress, using a cubic tensor polynomial. The evaluation of strength 
parameters is performed using existing experimental data via a least squares approach. The 
derived failure surface is shown to be in good agreement with classical experimental results. 
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INTRODUCTION 
For the purpose of masonry characterization, analysis, and design, an operationally simple 
strength criterion is essential. Masonry, one of the older structural materials, has a mechanical 
behaviour, which has not yet been fully investigated. Systematic experimental and/or analytical 
investigations on the response of masonry and its failure modes have been conducted in the last 
two decades. 
 
There have been numerous analytical criteria for masonry structures [1-3]. The main 
disadvantage of existing criteria is that they ignore the distinct anisotropic nature of masonry; 
even if they do not ignore that, they consist of more than one type of surface leading to 
additional effort in the analysis process of the masonry structures [4]. According to Zienkiewicz, 
Valliappan and King [5] the computation of singular points (“corners”) on failure surfaces may 
be avoided by a suitable choice of a continuous surface, which usually can represent, with a good 
degree of accuracy, the true condition. 



 

 
Since reliable experimental data in the combined-stress state are emerging rapidly [6-8], it is, 
therefore, timely to examine the validity and utility of existing criteria, and to propose a failure 
surface of convex shape suitable for the anisotropic nature of masonry material. According to 
Hill [9] and Prager [10] the failure surface for a stable material must be convex. This, in 
mathematical terms, is valid if the total Gaussian curvature K of the failure surface is positive. 
 
SHORT LITERATURE SURVEY 
Masonry exhibits distinct directional properties due to the influence of the mortar joints. 
Depending upon the orientation of the joints to the stress directions, failure can occur in the 
joints alone or simultaneously in the joints and the blocks. The failure of masonry under uniaxial 
and biaxial stress state has been studied experimentally in the past by many researchers but there 
have been few attempts to obtain a general analytical failure criterion. The following is a brief 
review of the most representative experimental and analytical investigations. 
 
Researchers have long been aware of the significance of the bed joint angle to the applied load. 
Johnson and Thompson [11] carried out compression tests on brick masonry discs to produce 
indirect tensile stresses on joints inclined at various angles to the vertical compressive load. 
Differences in failure patterns of the specimens were evident with the disc bed joints at various 
angles. The highest strength of the masonry has been observed for the cases when the 
compressive load was perpendicular to the bed joints or when the principal tensile stress at the 
centre of the disc was parallel to the bed joints. In this case failure occurred through bricks and 
perpendicular joints. The lowest strength has been observed when the compressive load was 
parallel to the bed joints or when the principal tensile stress at the centre of the disc was 
perpendicular to the bed joints. In this case failure occurred along the interface of brick and 
mortar joint. 
 
The most complete experimental investigation of half scale clay brick masonry specimens under 
biaxial stress state was performed by Page [8]. A total of 180 panels, with five different bed joint 
orientations, were tested for a range of principal stress ratios. A minimum of four tests were 
performed for each combination of σ

1
, σ

2
 and θ . The results for each bed joint angle are 

illustrated in Figure 1. A few points are mentioned to highlight the nature of masonry. First, a 
large dispersion of mechanical characteristics of brick masonry can be seen, despite the fact that, 
according to the researchers, all the panels have been made by the same bricklayers and under 
the same environmental conditions. Second, the intense anisotropic nature of this masonry 
material is depicted. These results will be used in this paper as data to the development of the 
proposed analytical anisotropic failure criterion. 
 
A failure surface for brick masonry, in the tension-tension principal stress region, has been 
derived analytically by Page [7]. The shape of this failure surface was found to be critically 
dependent on the bed joint orientation and the relationship between the shear and tensile bond 
strengths of the mortar joints. 
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Figure 1: Failure Curves of Brick Masonry under Biaxial Compression in Terms of the 

Principal Stresses θσσ ,, 21  [Page 1981] 
 
There have been few attempts to obtain a general failure criterion for masonry because of the 
difficulties in developing a representative biaxial test and the large number of tests involved. The 
problem has been discussed by Yokel and Fatal [12], with reference to the failure of shear walls. 
Dhanasekar et al. [1] interpolated the test data of Page [8] by means of three elliptic cones, 
which, however, as the authors mentioned, do not correspond with the observed distinct modes 
of failure. The elliptic cones have been expressed by a second order tensor polynomial. A wide 
review of the subject can be found in Samarasinghe [6] and Hendry [13]. 
 
More recently, Bortolotti et al. [3] using previous discussed experimental results by Page [8], 
have proposed a generalized failure criterion in the form of an elliptical curve valid for masonry 
and concrete but only for the case of biaxial compression state. 
 
THE ANALYTICAL MODEL 
For the expression of an analytical failure model of masonry, a tensor polynomial has been 
proposed. This failure surface, in the stress space, can be described by the equation [14-17]: 
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In this equation σ

l
 (l = 1, 2,..., 6) are the components of stresses and Fi, Fij, Fijk (i, j, k = 1, 2,..., 

6) are strength tensors of the second, fourth and sixth rank, respectively. 
 
If one restricts the analysis to a plane stress state and considers that a cubic formulation is a 
reasonably accurate representation of the failure surface -with suitable assumptions mainly based 
on the symmetry and orthotropic nature that presents the material of brick masonry [17-18]- and 
using the notations ( )τσσ ,, yx  instead of ( )621 ,, σσσ , Equation 1 reduces to: 
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EVALUATION OF THE STRENGTH PARAMETERS 
The determination of the strength parameters is made in two steps. In the first step, as it is 
presented extensively and in depth immediately below, the determination of Principal Strength 
Tensor Components (Fi, Fii) are made, followed, in the second stage, by the determination of the 
Interaction Strength Tensor Components (Fij, Fijk). 
 
First Step: The Principal Strength Tensor Components Fi and Fii, could be determined using the 
experimental monoaxial tensile and compressive failure stresses across the axis x and y, 
respectively, as well as the shear failure stresses in the plane xy. Monoaxial strengths of the wall 
in tension and compression across the x axis are used, noted as X and X′ respectively. For the 
case of masonry, the two points (X, 0, 0) and (-X′, 0, 0) intersecting the axis x with the failure 
surface, are determined. For these points, Equation 2 takes the form: 
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The solution of the system of Equations 3 are giving the values: 
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The monoaxial tests across the y axis, lead respectively to the values of: 
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The points of failure surface (0, 0, S) and (0, 0, -S) are determined by the test of the masonry 
panel in pure shear. Using Equation 2 it results for these points that: 
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Second Step: In order to define the masonry failure criterion under biaxial stress state (Equation 
2) the values of the Interaction Strength Tensor Components F12, F112, F122, F166 and F266 have to 
be determined, using the least squares method. These constants are calculated through the system 
of equations: 
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The equations to be used for ν groups of values ( , , )σ σ τ

xi yi i
 (i = 1, 2,..., ν), properly chosen, can 

be also written in the form: 
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The surface corresponding to these values F12, F112, F122, F166 and F266 should be checked for its 
closed form and convex shape. According to Hill [9] and Prager [10] the failure surface for a 
stable material must be convex. The surface is closed if the total Gaussian curvature K of the 
failure surface: 
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is positive [19-20], or, as the denominator is always positive if: 
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If this condition is not fulfilled, i.e. the solution does not correspond to a closed failure surface, 
the areas of local minimum extremes have to be used. The limits of these areas are determined 
through a parametric investigation for any one of these five constants, e.g. for constant F12. 
Using various values for F12 (-∞≤ F12≤+∞) the equivalent values for the other four constants are 
calculated [17]. 
 
Through various values of the function (8) are calculated, and verification of condition 11 is also 
checked for each step. This verification leads to the determination of the limits inside which a 
closed failure surface is secured. The five values of the constants F12, F112, F122, F166 and F266 
fulfilling the requirement of the closed failure surface and at the same time minimizing the value 
of the function 8, are selected as the solution of the problem. 
 
APPLICATION 
In the case presented, the method has been applied through a special-purpose computer program 
developed by the authors. With this program the failure surface is determined for a real case of a 
masonry material studied already experimentally [8]. This data has been used by many other 
researchers [1-3]. As discussed above the determination of the strength parameters is made in 
two steps. 
 
First, the Principal Strength Tensor Components (Fi, Fii) are estimated via Equations 4-6 using 
the experimental values of material monoaxial failure strength depicted in Table 1. The 
coefficients (Fi, Fii) are given in Table 2. 
 

Table 1: Monoaxial failure strengths for masonry material [8] 
 

X 
(MPa) 

′ X
(MPa) 

Y  
(MPa) 

′Y  
(MPa) 

S S= ′  
(Mpa) 

 
0,40 

 
4,3625 

 
0,10 

 
7,555 

 
0,40 

 
Table 2: Principal Strength Tensor Components (Fi, Fii) 

 
F1 

(Mpa)-1 
F11 

(Mpa)-2 
F2 

(Mpa)-1 
F22 

(Mpa)-2 
F66 

(MPa)-2 
 

0.227E+01  
 

0.573E+00  
 

0.987E+01  
 

0.132E+01  
 

0.625E+01  
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Table 3: Data of Biaxial Tests Table 4: Data of Biaxial Tests 

  
Test No  

(MPa) 
σ

y
 

(MPa) 
τ  

(MPa) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
 

-0.727 
-0.727 
-2.272 
-2.181 
-4.545 
-7.909 
-8.818 
-9.454 
-9.590 
-11.273 
-9.272 

-7.542 
-8.417 
-9.250 
-8.750 
-8.667 
-7.791 
-8.750 
-4.792 
-2.333 
-5.583 
-1.000 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

Note: These values have been estimated 
from graphs [8]. 

Test No σ
x

(MPa) 
σ

y
 

(MPa) 
τ  

(MPa) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

-4.181 
-9.909 
-8.308 
-4.555 
-5.821 
-6.620 
-5.821 
-6.620 
-8.273 
-5.227 
-4.181 
-9.909 

-8.000 
-5.042 
-8.475 
-1.310 
-5.821 
-6.620 
-5.821 
-6.620 
-8.475 
-1.310 
-8.000 
-5.042 

0.000 
0.000 
0.084 
-1.622 
3.571 
2.120 
-3.571 
-2.120 
-0.084 
1.622 
0.000 
0.000 

Note: These values have been estimated 
from graphs [8]. 

  
Second, the determination of the Interaction Strength Tensor Components (Fij, Fijk) is made by 
the solution of Equation 9 using experimental data of Tables 3 and 4. The results corresponding 
to these data are F12=-0.150 (Mpa)-2, F112=0.3195E-02 (Mpa)-3, F122=0.1045E-02 (Mpa)-3, 
F166=0.9466E-01 (Mpa)-3, F266=0.1563E+00 (MPa)-3. 
 
With the above-mentioned calculated values of the coefficients, the failure surface for the 
masonry is described by the equation: 
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The main disadvantage of this anisotropic failure criterion is that it applies only to the specific 
masonry material that was studied by Page [8]. This disadvantage could be reversed if this 
criterion is expressed in a non-dimensional form, and, as such, can be applied more generally to 
a plethora of masonry materials. This can be achieved by dividing and multiplying (at the same 
time) each term in Equation 12 by one material monoaxial strength raised in the sum of the 
exponents of the variables τσσ ,, yx  (as appeared in each term). We select to use the uniaxial 
compressive strength ′Y  across the y-axis, which, in terms of the masonry material corresponds 
to the uniaxial compressive strength denoted with the symbol . °ƒ90

wc

 
Equation 12 can thus be recast as: 
 



 

 
 
 

Figure 2: Non-Dimensional Failure Surface of Masonry in Normal Stress Terms 
( °ƒτ 90

wc =0.00 up to 0.45 by step=0.05) 
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Figure 2 depicts the contour map of Equation 13, that is the non-dimensional failure surface of 
masonry in normal stress terms (with °ƒτ taking values of 0 up to 0.45 by steps of 0.05). 90

wc

 
The validity of the method is demonstrated by comparing the derived analytical failure surface of 
Equation 13 with existing experimental results [8]. Figures 3 and 4 present both the analytical 
curves for the failure surface of Equation 13 and the superimposed more than 75 experimental 
data-points. The good agreement of the experimental and analytical data can be seen. 
 
CONCLUSIONS 
In this paper, a non-dimensional anisotropic masonry failure criterion under biaxial stress state is 
presented. Main advantages of this criterion constitute: a) the ability to ensure the closed and 
convex shape of the failure surface (the failure surface for a stable material must be convex), b) 
the expression of the failure by a single, general-purpose surface, which can be used for all 
possible combinations of plane stress in order to make easier its inclusion to existing software for 
the non-linear analysis of masonry structures, c) the good agreement of the proposed criterion 
with the results of the real masonry behaviour (experimental data) under failure conditions. 
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Figure 3: Non-Dimensional Failure Curve of Masonry in Principal Stress Terms 
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Figure 4: Non-Dimensional Failure Curve of Masonry in Principal Stress Terms 
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