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ABSTRACT 
The aim of this work is to estimate through the static theorem of limit analysis the safety of a 
masonry dome -assumed as a single rigid block- supported by radial rigid masonry columns and 
subjected to their own weight and to increasing horizontal loads. The yield domain conditions for 
the quadrilateral sections of the columns are expressed in terms of the six stress resultants, on the 
assumption that masonry has unlimited compressive strength, an inability to sustain tension, 
sliding with dilatancy. The results obtained are very encouraging and show a good coherence 
with regard to the kinematic answer. 
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INTRODUCTION 
The problem of safeguard of historic masonry buildings that characterize most of the old 
European town centres and, particularly, that one concerning the preservation of the masonry 
domes, is of great interest at present. Many authors point out the particular importance of the 
limit analysis in estimating the safety of masonry structures, when they are modelled as discrete 
systems of rigid blocks. 
In this work, as first approach to the problem of the safety of more complex structures subjected 
to horizontal loads, we propose an extension and a generalization of a method already adopted in 
previous works with regard to simpler load conditions or structural typologies [1], [2], [3], [4]. 
This method is applied now to evaluate horizontal loads multiplier and collapse mechanism of a 
dome supported by radial masonry columns having quadrilateral section, subjected to own 
weight and to horizontal increasing loads. We, as a preliminary stage to the domes' analysis, 
assume like "rigid blocks" the dome (as a result of a hooping system) and also the columns 
which are supposed to be resting on underlying fixed structures. 



The solution is obtained through the static theorem of limit analysis following these assumptions: 
an inability to sustain tension as regards the contact interfaces -namely at the bottom and at the 
top of the columns-an unlimited compressive strength at the interfaces and a provision for the 
blocks to slide with dilatancy. The results obtained are very encouraging and show a good 
coherence with regard to the kinematic answer. 
 
THE EQUILIBRIUM CONDITIONS  
The equilibrium conditions regard the dome and the columns below as single rigid blocks. The 
six contact forces N, Tr, Ts, Mt, Mr, Ms on the interfaces, are supposed to be applied at the 
centroid of each interface and refer to a local Cartesian axes n, r, s (Figure 1). 
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Figure 1: Contact forces on the generic interface; dead and live loads on the centroid block 
 
The dome and columns are subjected to the six contact forces and to the dead Pe (the self weight 
of the block) load and to the live increasing horizontal load(s) αPe - all parallel to x-axis - (α 
being a multiplier of self weight), both applied to the Ge centroid of the block. The six 
equilibrium equations of a generic "e" block can be expressed briefly by: 
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where, nc being is the number of columns, Ae is a (6 x 6nc) or (6x12) matrix for the dome and 
generic column respectively, Xe is the vector of the all unknown stress resultants on the generic 
block, Fv

e is the vector of the dead loads and F0
e is the vector of the live loads, increasing by the 

multiplier α. 
 
YIELD DOMAIN FOR THE GENERIC INTERFACE  
The stress resultants on the interfaces have to respect the yield domains of the material for 
rocking (Figure 2) and sliding (Figure 3).  
With reference to a quadrilateral section (Figure 4), as a coherent kinematic mechanism needs 
the rotation on an axis coincident with one of four sides of a section, for the N-M yield domain 
we imposed four conditions: 
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with d i the distance between G (Figure 4a) and the generic side "i" (i=1, 2, 3, 4) and Mi = M·ki, 
M = Mr kr + Ms ks being the Cartesian expression of the moment (Figure 4b). Therefore tanψ in 
Figure 2 coincides with the generic distance di. We notice that the yield domain obtained in this 
way is coincident with that proposed through a different formulation by other authors [5]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         Figure 2: Rocking yield domain                          Figure 3: Sliding yield domain 
 
 
 
 
 
 
 
 
 

 
         Figure 4: Quadrilateral section: a) geometrical aspect;  b) mechanical aspect 
 
In this first approach, the cone with axis coinciding with the N-axis that defines the N-T yield 
domain, has been opportunely replaced by a piecewise linear yield domain having four sides. 
Therefore we impose four conditions making reference to the Cartesian components Tr and Ts 
(Figure 1) of T, being  T = Tr kr + Ts ks: 
 
tanϕo N ± Tr ≤ 0                                                                                                                             (3) 
 
tanϕo N ± Ts ≤ 0                                                                                                                             (4) 
 
Thus, in Figure 3, T coincides with the generic component Tr or Ts whereas ϕ coincides with the 
angle of friction ϕo. 
For the N-Mt yield domain, by analogy with other authors [6], we have considered a circular 
section equivalent having radius R equal to the mean of d i distances of Figure 4a: 
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R = (1/4) (d1+d2+d3+d4)                                                                                                                (5) 
 
Therefore we impose two conditions: 
 
(2/3)Rtanϕo N ± Mt ≤ 0                                                                                                                 (6) 
 
where in Figure 3, tanϕ = (2/3)Rtanϕo. 
In the matrix form the conditions expressed by the (2), (3), (4) and (6) become: 
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or: 
 
Yf = Df Xf ≤ 0                                                                                                                               (8) 
 
where Df is a (10x6) matrix and Xf is the vector of the unknown stress resultants on the generic 
section "f", while k1, k2, k3 and k4 are, in an orderly way, the side unit vectors of a generic 
quadrilateral section (Figure 4a). 
 
GOVERNING CONDITIONS 
If n and m are the number of rigid blocks and of interfaces, the equilibrium conditions are: 
 
A X + Fv + α Fo = 0                                                                                (9) 
 
and the yield domain’s conditions are: 
 
Y = D X ≤ 0                                                                                                                                 (10) 
 
where A is a (6n x 6m) matrix, X is a 6m-vector, Fv and Fo are 6n-vectors, α is the unknown 
collapse multiplier, D is a (10m x 6m) matrix. Consequently, the problem can be formulated in 
the following manner: 
 



maximize α  
subject to: 
 
A X + Fv + α Fo = 0                                                                                                                    (11) 
 
Y = D X ≤ 0                                                                                                                                 (12) 
 
α  ≥  0                                                                                                                    (13) 
 
THE EVALUATION OF COLLAPSE MECHANISM 
Once the multiplier α has been calculated we can pursue the kinematic problem taking into 
account the following conditions: 
 
AT u = Δ                                                                                                                                      (14) 
 
and of the flow rule: 
 
Δ = DT λ                                                                                                                                       (15) 
 
u being the vector of the degrees of freedom (six for every block), Δ  the vector which collects 
the displacements between the interfaces (six for every interface) and λ  the vector of the 
generalized strain rates associated to the yield conditions (ten for every interface).  
 
APPLICATIONS 
We have analyzed a hemispheric dome with the following geometric characteristics: Re = 6m, Ri 
= 5m (and then thickness s = 1m), Re and Ri being extrados radius and intrados radius. It is 
supported  by eight radial rigid masonry columns having a symmetric trapezium shaped section 
(Figure 5), with a height h = s cos(θc/2), a smaller base bi = 2 Ri sen(θc/2) and a greater base be = 
2 Re sen(θc/2).  
In a general formulation the amplitude θc can be defined by kc(2π/nc), with kc a positive 
coefficient < 1 and nc the number of columns, while the amplitude of openings between two 
columns adjoining is defined by the angle θo = ko(2π/nc), being ko= 1- kc. 
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Figure 5: Semi-dome plan 



In Table 1 are showed the values of collapse loads multiplier α, varying both the height H and 
the coefficient kc, having assumed as friction coefficient tanφo=0.75.  
In Table 2 are showed the values of α, for assigned values of tanφo  included between 0.5 and 0.8, 
for a fixed height H = 6m of columns. We can observe that, for a fixed kc, varying tanφo there 
isn't much difference of the values of α.  
 
 

Table 1: α – H – kc relationships 
 

   0.3 0.4 0.5 0.6 0.7 

1 0.975139 0.973648 0.972221 0.970863 0.96958 

2 0.783591 0.873526 0.87031 0.866886 0.863256 

3 0.522559 0.647213 0.768817 0.794008 0.789265 

4 0.3918 0.484651 0.574293 0.66086 0.737882 

5 0.313261 0.387555 0.457758 0.526208 0.591456 

6 0.260886 0.322598 0.381314 0.43664 0.490368 

7 0.223471 0.276142 0.326409 0.373577 0.418357 

8 0.195411 0.241283 0.285117 0.326503 0.364684 

9 0.173588 0.214169 0.252961 0.289712 0.324046 

10 0.156131 0.19248 0.227226 0.260211 0.2912 

 
 

Table 2: α – tanφo relationships, for H=6m 
 

 0.3 0.4 0.5 0.6 0.7 

0.5 0.260645 0.320947 0.378503 0.433563 0.482711 

0.55 0.260722 0.321530 0.378939 0.434344 0.486710 

0.6 0.260779 0.321925 0.379319 0.435027 0.487796 

0.65 0.260823 0.322212 0.379812 0.435628 0.488754 

0.7 0.260858 0.322428 0.380710 0.436162 0.489606 

0.75 0.260886 0.322598 0.381314 0.436640 0.490368 

0.8 0.260909 0.322735 0.381780 0.437010 0.491053 

kc 
H(m) 

tan φo 
kc 

 
In Figures 6 and 7, with reference to Table 1, α – H curves (for different values of kc) are drawn 
and α – kc curves (for different values of H) are drawn. 
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In Figure 8 the collapse mechanism corresponding to a dome where the height of the columns is 
H = 6m and kc= 0.5 is drawn. The mechanism obtained -essentially a rocking mechanism of the 
columns- is that expected, as Figure 8b also shows.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Collapse mechanism a) axonometric view; b) front view 

 
CONCLUSIONS 
The behaviour of masonry domes subjected to seismic loads still does not seem to have been 
broached in current literature. As first approach to the problem of the evaluation of the safety of 
these complex structures, in this study we have calculated the horizontal loads multipliers of a 
dome taken as a single rigid dome, supported by radial rigid masonry columns having a 
quadrilateral section. Both the dome and the columns are subjected to their own weight and to 
horizontal increasing loads. The horizontal loads multipliers have been obtained through the 

Figure 6: α – H curves Figure 7: α – kc curves 
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static theorem of limit analysis, on the assumption of an unlimited compressive strength, an 
inability to sustain tension and sliding with dilatancy.  
Even if we have found neither experimental nor theoretical results to make a comparison, our 
procedure, although considering a simple model and very simple yield conditions, has shown 
good coherence with regard to kinematic answer and has encouraged us to extend this 
methodology to more complex problems like masonry domes, with and without drum and 
lantern, modelled as discrete systems of rigid blocks and subjected to horizontal loads. 
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