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ABSTRACT 
The collapse of historical masonry structures in Europe in the late 1990’s raised the interest in 
understanding the long-term effect of masonry under sustained compressive stresses. That 
requires combining the significance of time-dependent effects of creep with the effect of damage 
due to overstress to realize the evolution of cracks and then failure in masonry. Meanwhile, 
composite analysis of masonry panels was proven effective for realizing ultimate strength 
capacity. Composite analysis also provides the ability to consider system reliability in analyzing 
masonry panels. 
In this article, a masonry panel under high compressive stress to strength ratio is considered. The 
panel is modelled as a composite structure by considering a repeated unit cell of mortar and brick. 
Load redistributions due to creep in mortar and brick as composite materials are accounted for. A 
step-by-step in time analysis is performed to track the load redistribution in the composite 
masonry. Time-dependent system reliability analysis of the masonry panel is performed by 
defining component and system limit state functions at each time step.  
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INTRODUCTION 
Creep strain is defined as the strain increment observed over time in materials subject to 
sustained stress [1]. Creep is known for its effect on serviceability of structures. In composite 
structures consisting of more than two bonded materials, loads are distributed to individual 
material according to its relative stiffness and end constraints with other materials [1]. Therefore, 
creep can produce significant stress redistribution within the composite material affecting the 
composite action [2, 3]. Shrive [4] demonstrated the significance of creep on prestress loss in  
post-tensioned masonry. Moreover, investigations after the collapse of the Civic Tower in Pavia 
in Italy revealed that the historic masonry structure collapsed under sustained loads that were 
close to 60% of its ultimate capacity [5]. Creep experiments on clay masonry showed that creep 
deformation significantly contributes toward the total deformation and can lead to structural 



failure [6]. Numerous efforts for predicting and modelling creep in structural masonry have been 
reported by several researchers [6-8]. 
In this study, a masonry panel is modelled as a composite structure including mortar and brick as 
suggested by Shrive and England [9]. We show that creep redistributes load between brick and 
mortar by constraints without additional loading. A step-by-step in time analysis [10] is used to 
determine time-dependent reliability incorporating composite action. By assuming mortar and 
brick as brittle or perfectly plastic materials, the bounds of reliability indexes are determined. We 
then determine the reliability indexes for quasi-brittle masonry as an intermediate state between 
brittle and ductile behaviours. Failure criteria for the composite model are derived using De 
Morgan’s principles [11]. A case study is presented using the step-by-step method considering 
specific creep models for mortar and brick. The results show the significance of creep on 
reliability of masonry panels under sustained axial loads. 
 
METHODS 
The ‘violation’ of a limit state can be defined as the attainment of undesirable conditions of 
structures [12]. For a structure that has the resistance R(X) and is subjected to the load effect 
P(X), the limit state function for a set of uncertain variables X can be defined as 
 

1 2(X) (X) (X) where X { , ,..., }nG R P x x x= − =                                                                             (1) 
 
In this case, the violation of limit state will take place when ‘G(X) ≤  0’ and the integration of 
joint probability density function (PDF) of variables x for the violation region results in the 
probability of failure of the structure. Therefore, for linear limit state function and normal joint 
PDF of variables x, the probability of failure can be represented by the well known reliability 
index β representing the normal distance from the origin of the standard joint PDF to the limit 
state function computed using the first two moments, mean and standard deviation, of joint PDF 
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where μR, μP, σR and σP are the means and the standard deviations of R and P respectively, 
which are propagated from the means and the standard deviations of variables x. The probability 
of failure can be determined as 
  

1( )fp β−= Φ −                                                                                                                                 (3) 
 
where Φ-1 is the inverse of standard normal cumulative density function (CDF). Considering the 
central limit theorem, if a first order approximation of nonlinear limit state function can be 
attained, the reliability index can be used to calculate the probability of failure. An acceptable 
reliability index β is used to determine the load and resistance factors for design codes [13]. 
 
System reliability analysis 
The structural unit element in a masonry panel can be defined using a repeated unit cell/element 
shown in Figure 1 (a) [8]. This unit element is made up of two parallel composite parts that 
consist of mortar and brick as shown in Figure 1 (b). It is assumed that displacement 



compatibility is satisfied at the top and the bottom of the unit element. In other words, bond 
between the two parts in the unit element is considered to be perfect bond during analysis to 
ensure shear force between two parts are transferred.  
 

             
 
(a) Repeated unit cell in masonry panel                         (b) Unit element 

Figure 1: (a) Repeated unit cell (inside of broken line) in masonry panel which thickness is 
w and (b) modeling reapeated unit cell as unit element 

 
As shown in Figure 1 (b), the suggested unit element can be considered as a set structure. The 
unit element in Figure 1 (b) can resist loads until both parts of the unit element fail. Moreover, if 
either mortar or brick fails in a part, that part cannot resist loads. Therefore, a survival set of the 
unit element S can be expressed by operations on classical set theory, union and intersection as 
  

1 1 2 2( ) ( )S BS MS BS MS= I U I                                                                                                     (4) 
 
where 
 
BS1 = survival of B1 (brick in Part 1), MS1 = survival of M1 (mortar in Part 1)  
BS2 = survival of B2 (brick in Part 2), MS2 = survival of M2 (mortar in Part 2) 
 
To describe the failure criteria, the failure set of the unit element F can be taken as the 
complement of the survival set of the unit element S and it is shown as 
  

1 1 2 2( ) ( )F BS MS BS MS= I U I                                                                                                     (5) 
 
where the over-line symbol of each set denotes the complement of the set. Using De Morgan’s 
principle, Eq. (5) will be re-written as  
 

1 1 1 1( ) ( )F BS MS BS MS= U I U                                                                                                      (6) 
 
As both mortar and brick can be considered as quasi-brittle materials, both materials can 
maintain some load after cracking (considered here as failure). For parallel system of brittle 
materials, if one part fails, that part cannot resist load anymore and the whole load transfers to 
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the other part. However, for parallel system of perfectly plastic materials, if one part fails, that 
part can maintain the amount of its maximum load capacity and the remaining load transfers to 
the other part. Therefore, by assuming mortar and brick as brittle or perfectly plastic materials, 
the upper and lower bounds of the reliability index can be determined.  
First, assuming both mortar and brick are perfectly plastic materials, the reliability index βd for 
ductile behavior of Eq. (6) can be calculated after [14] 
 

{ }{ }, 1 , 1 , 2 , 21 (1 )(1 ) 1 (1 )(1 )d f M f B f M f Bp p p pβ ⎡ ⎤= Φ − − − − − −⎣ ⎦                                                       (7) 

 
where pf,M1, pf,B1, pf,M2 and pf,B2 are the probabilities of failure calculated using Eqs. (2) and (3) 
considering the maximum strengths and the applied stresses of mortar and brick in each part. 
Second, if we assume that both mortar and brick are brittle, the reliability index βb for brittle 
materials can be calculated with the overall resisting force for the unit element Rmax defined after 
[14] as 
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where { } { }max max min 2 , 2 , min ( ) / 2, ( ) / 2 3m b m bR f jw f jw f b j w f b j w for b j= − − >⎡ ⎤⎣ ⎦     (9) 
 
where P is the load applied to the system in Figure 1 (b). σRmax and σP are the standard deviations 
of Rmax and P respectively. Finally, the reliability index for quasi-brittle materials denoted βq 
shall lie between the upper and lower bounds of the reliability indexes defined above such that 
 

b q dβ β β< <                                                                                                                                 (10) 
 
It is noticeable that while the reliability index of ductile materials depends on the load level in 
each part, the reliability index of brittle materials depends on only the overall load. With the 
reliability index of quasi-brittle material βq being between these two bounds, the reliability index 
of quasi-brittle materials depends on both the load level in each part and the overall load. 
 
Composite materials incorporating creep 
When axial load P applies to a composite structure consisting of two parts bonded in parallel at 
time t, force equilibrium at time t requires 
 

1 2( ) ( ) ( )P t P t P t= +                                                                                                                        (11) 
 

where P1(t) and P2(t) are the forces acting on Part 1 and 2 at time t respectively. Moreover, when 
additional deflection by creep is incorporated to each material, compatibility condition at time t 
requires 
 

1 1 ,1 2 2 ,2( ) / ( ) ( ) ( ) / ( ) ( )creep creepP t K t t P t K t t+ Δ = + Δ                                                                         (12) 
 



where K1(t) and K2(t) denote stiffness of Part 1 and 2 at time t respectively. Δcreep,1(t) and 
Δcreep,2(t) are additional creep deflection of Part 1 and 2 at time t respectively. Although the 
additional creep deflection at time t can be determined by both the effective modulus method and 
the step-by-step method, the step-by-step method was used to avoid missing stress peak [15]. 
The main idea of the step-by-step in time method is that both force equilibrium in Eq. (11) and 
compatibility condition in Eq. (12) are satisfied at the end of each time step. For the first time 
step, initial value of applied load for each part can be calculated using the elastic solution. For 
the masonry panel as shown in Figure 1 (b), stiffness of both parts, K1(t) and K2(t) will be 
calculated as  

 
( )11/ ( ) 2 / ( ) / ( ) /m bK t l j E t l E t jw= + +⎡ ⎤⎣ ⎦                                                                                    (13) 

[ ]21/ ( ) 2 / ( ) / ( ) /[( ) / 2]m bK t j E t l E t b j w= + −                                                                             (14) 
 

where Em(t) and Eb(t) are modulus of elasticity of mortar and brick at time t respectively. b, l and 
w denote brick size and j is mortar thickness as shown in Figure 1 (a). Additional creep 
deflection of each part during a time step is determined with assumption that the load at the 
beginning of the time step remains constant during the time step. Therefore, creep deflection of 
each part for n-th time step will be 
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where P1(n-1) and P2(n-1) denote the forces that are redistributed at the end of previous time 
step. δ scm and δ scb are the specific creep increments of mortar and brick respectively for the 
time step. Therefore, if n time steps are used until time t, total creep deflections at time t will be 
represented as accumulation of the number of n creep deflections such as 
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By using Eqs. (11) to (18), overall behaviour of masonry including creep can be demonstrated. If 
we consider continuum damage in either component as a function of time, the loads redistributed 
to each part can be determined. Because stiffness at time t in Eqs. (13) and (14) would vary with 
respect to time [16]. On the other hand, if all material components stayed in elastic stress region 
for service load level, Em(t) and Eb(t) in Eqs. (13) and (14) can be treated as constant as Em and 
Eb respectively. Therefore, Eqs. (11) to (18) can be solved for stress in Part 2 as 
 

{ } [ ]2 2( ) ( ) 1 2 ( ) / / 4bt t s g E DSC t jc g hσ σ= + − +⎡ ⎤⎣ ⎦                                                                    (19) 
 



where, σ(t) is total applied stress at time t, σ2(t) is applied stress to Part 2 at time t and the 
parameters in Eq. (19) are defined as 
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,2 ,1( ) ( ) ( )creep creepDSC t t t= Δ − Δ . After σ2(t) is determined using Eq. (18), σ1(t) can be identified 
using Eq. (11).  
 
CASE STUDY 
A case study for time-dependent reliability analysis of masonry is examined and presented here. 
A standard masonry panel was chosen [17]. Clay brick size was chosen as its dimension b x l x w 
of 190 x 57 x 90 mm. Mortar joints were chosen as 10 mm thick. The maximum strengths of 
mortar and brick were used as 10 MPa and 50 MPa respectively. Constant load during analysis 
was applied for case study as shown in Figure 2 (a). For reliability analysis, load variation at 
time t was assumed as 5%. The maximum strength variations for mortar and brick were used as 
15% and 5% respectively. The properties of brick and mortar for analysis are presented in Table 
1 with the calculated constants for the step-by-step analysis. 
 

Table 1: Input and calculated constants for case study 
 

Material properties and geometries Calculated constants 
b 190 mm c=Eb /Em 3 
l 57 mm s1=l / j 5.7 
w 90 mm s2=b / j 19 
j 10 mm g 0.104 

fm,max 10 MPa h 9.396 
fb,max 50 MPa σ1(0) 4.11 MPa 
Em 3.33 GPa σ2(0) 6.77 MPa 
Eb 10.0 GPa Elastic strain 879 μ 

 
 

    
(a) Applied load                  (b) Specific creep models for mortar and brick  

Figure 2: Input data used for case study 
 

6.5 MPa Mortar

Brick



Specific creep is defined as 
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where sc(t) is specific creep at time t. M and T are constant. The constant M and T in Eq. (20) for 
mortar were chosen as 1500 and 50 respectively [16]. Specific creep for brick was assumed as 
two third of that of mortar. The specific creep for mortar and brick are shown in Figure 2 (b). 

 
RESULTS AND DISCUSSION 
The change in stress with respect to time in each part of the unit element is presented in Figure 3. 
While stress in Part 1 increases, stress in Part 2 decreases by composite action. Based on these 
stress change, the reliability index for plastic materials is calculated at each time step by Eq. (7). 
On the other hand, there is no contribution of composite action to the reliability index for brittle 
materials. The reliability indexes for plastic materials at initial loading time in Eq. (21) and for 
brittle materials in Eqs. (22) and (23) are calculated as  
 

{ }{ }75 661 (1 0.00013)(1 4 10 ) 1 (1 0.0372)(1 4 10 ) 4.42dβ − −⎡ ⎤= Φ − − − × − − − × =⎣ ⎦                           (21) 

( ) ( ) ( )2 281 58.5 / 81 0.15 58.5 0.05 1.8bβ = − × + × =                                                                   (22) 
 
where  { } { }max max min 18, 90 , min 81, 405 81kN ( 190 3 30)R for b j= = = > =⎡ ⎤⎣ ⎦                (23) 
 

      
 

(a) Part 1                                                        (b) Part 2  
Figure 3: Change of stress in each part of the unit element with respect to time  

 
The reliability indexes for ductile and brittle materials are shown as the upper and the lower 
bounds with respect to time in Figure 4. The reliability index for quasi brittle material can be 
determined by identifying the level of ductility of the quasi-brittle material. For the case study, as 
brick is relatively stronger than mortar, the probability of failure of brick in both parts of the unit 
element is negligible as demonstrated by Eq. (21). Therefore, the overall reliability of masonry 
panel depends on the reliability of mortar. Conclusively, the reliability of masonry panel for our 
case study is determined by considering the level of ductility in mortar. 



 

 
Figure 4: Reliability index bound with respect to time  

 
 

 
(a) Linear decsending stress strain curves               (b) Interpolation curves 

Figure 5: Interpolation of the reliability index with respect to ductile behaviour  
 
By considering linear descending stress-strain relationship after Scanlon and Murray [18],  
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where α is the maximum to peak strain ratio. As shown in Figure 5 (a) for various cases of α, the 
maximum to peak strain ratio α is related to ductility of mortar. Therefore, a ductility number λ 
can be defined as 
 

1 exp ( 1)ζλ ω α⎡ ⎤= − − −⎣ ⎦                                                                                                              (25) 
 
where ω and ζ are constants to relate the ductility number λ to the maximum to peak strain ratio 
α. Here, we use ω and ζ equal unity respectively. Moreover, the intermediate reliability index for 
quasi-brittle material can be found by considering an intermediate probability of failure between 
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ductile and brittle probability of failures. Therefore, it is suggested to use the probability of 
failure to reliability index ratio γ defined as 
 

/fpγ β=    thus  1( ) 0β γβ−Φ − − =                                                                                            (26) 
 
The interpolation for quasi-brittle material γq is computed as 
 

(1 )q d bγ λγ λ γ= + −                                                                                                                      (27) 
 
The graphical representation of interpolation for α equals 5 is shown in Figure 5 (b). 

 

 
(a) α=5                                                        (b) α=10 

Figure 6: Reliability index (solid line) and probability of failure (broken line) for masonry 
panel when its mortar stress-strain curve for α values as (a) 3 or (b) 5  

 
The interpolated reliability index βq and probability of failure pf,q for quasi-brittle masonry are 
presented in Figures 6(a) and (b) for two different values of α. The results show that the 
reliability of masonry panel under sustained load decreases with time. It is noticeable that as the 
ductility of the quasi-brittle material increases due to a confining stress effects on materials [19], 
a modification of the ductility number λ for mortar, which lie in the tri-axial compressive stress 
state [20], will be needed. 
 
CONCLUSION  
Reliability analysis for masonry panels was conducted by modelling repeated unit element of a 
masonry panel as a system unit cell. The reliability index of quasi-brittle materials were 
interpolated from the reliability indices of brittle and ductile materials by considering ductile 
behaviour of masonry. A case study of a masonry panel under relatively high permanent 
compressive stresses is considered. The results of the case study show that load redistribution 
caused by creep can alter the level of structural reliability of masonry panels under permanent 
stress. The results also indicate that ductility of mortar joints has a major effect on masonry panel 
reliability (probability of failure) and its change with time due to creep. It is concluded that the 
significance of triaxial confinement of mortar joints on mortar joint ductility shall be considered 
when analyzing time-dependent reliability of masonry panels. Further research is underway to 
incorporate that effect.  
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