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ABSTRACT 
Masonry shear walls are the major lateral load-carrying elements in masonry structures. Due to 
the fact that failure of the member might directly be followed by collapse of the structure, 
reliability analysis of masonry walls subjected to in-plane shear is important. Nevertheless, 
reliability of these members has not been subjected to extensive research due to the complex 
load-carrying behaviour. In this paper, an approach for the assessment of the reliability of 
masonry walls subjected to in-plane shear using analytical models is examined. An example wall 
is designed according to Canadian codes and subsequently analysed using probabilistic methods. 
The reliability of the wall will be determined and a parameter study will be performed. In the last 
step, partial safety factors for the safe design of masonry walls subjected to in-plane shear will be 
recommended. 
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INTRODUCTION 
The key objective in structural design is the design of sufficiently safe and reliable structures. 
While safety commonly refers to the absence of hazards, reliability is a calculable value that can 
be determined by probabilistic methods. In current structural design codes, the demands of safety 
are accommodated by the use of partial safety factors which can be derived from probabilistic 
analysis. Unlike other materials in construction, the reliability of masonry members has not been 
subjected to extensive research in the past. Recent research (see [1]) showed the necessity for a 
probabilistic approach to masonry structures. 
Masonry walls subjected to in-plane shear, exhibit complex load carrying behaviour which is 
difficult to describe by analytical models. Hence, finite element analysis combined with software 
for reliability analysis have been preferred in the past. However, since the numerical modeling of 
masonry is also difficult and a large database of experiments is required for the calibration of the 
FE model, in this paper several analytical approaches will be compared to test data and assessed. 
 
 



RELIABILITY OF STRUCTURES 
The most important requirement for structures is reliability. The term reliability concerns every 
aspect of a structure, structures have to be reliable when it comes to load bearing capacity as well 
as serviceability. In design, every parameter is uncertain to some extent. The uncertainty may be 
in the strength of materials as well as in dimensions and quality of workmanship. All parameters, 
further referred to as basic variables, influence the properties of a member. Reliability is linked 
to the probability that a member will exceed a certain limit state. This can be described by so 
called limit state functions. For ultimate limit state, the limit state function can be written as 
follows: 
 
Z(R,E) = R - E (1) 
 
where R is resistance and E is load effect.  
 
In the case where R = E, the ultimate limit state is reached. It can be seen from this equation that 
the safety of a member can be defined as the difference between the resistance and load effect. It 
has to be noted that R and E are independent random variables in many cases, so they have to be 
described by means of stochastics. Therefore a stochastic model, mostly consisting of a 
probability distribution and the corresponding moments (e.g. mean, standard deviation) is 
required for every basic variable. 
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Figure 1: Definition of failure probability [1] 

 
The failure probability can be computed by probabilistic methods such as SORM (Second Order 
Reliability Method) or Monte Carlo-simulation. For further information see [2]. 
 
For the description of the resistance proper models are required that describe the load carrying 
behaviour realistically. Contrary to design models, a model that underestimates the load carrying 
behaviour is not sufficient for probabilistic analysis. 
 



To find a measure for reliability that can be defined independently from the type of distribution 
of the basic variables, the reliability index βR according to [3] has proven useful. The major 
advantage of this definition is that only the mean, mz, and standard deviation, σz, of the basic 
variables need to be known. 
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With this measure, target reliabilities can be defined. Ideally, target reliabilities are based on a 
complex optimization process accounting for aspects of safety as well as economic requirements. 
In the past, target reliability has mostly been determined on an empirical basis. Since the target 
reliability has a major influence on safety factors, setting too large of a target reliability will lead 
to uneconomic design. More information can be found in [1], [4] and [5]. 
 
The Joint Committee on Structural Safety (JCSS) [6] gives the target reliabilities depending on 
the failure consequences as shown in Table 1. 
 

Table 1: Target reliabilities according to [6] for an observation period of 1 year 
 

relative cost for 
enhancing the structural 

reliability 

failure consequences 
Minora) Averageb) Majorc) 

large β=3.1 (Pf ≈·10-3) β=3.3 (Pf ≈·5·10-4) β=3.7 (Pf ≈ 10-4) 
medium β=3.7 (Pf ≈ 10-4) β=4.2 (Pf ≈ 10-5)d) β=4.4 (Pf ≈ 5·10-6) 

small β=4.2 (Pf ≈·10-5) β=4.4 (Pf ≈ 5·10-5) β=4.7 (Pf ≈ 10-6) 
a) e.g. agricultural building 
b) e.g. office buildings, residential buildings or industrial buildings 
c) e.g. bridges, stadiums or high-rise buildings 
d) recommendation for regular cases according to JCSS 2001 

 
These target reliabilities are considered to be sufficient for most cases and will be taken as 
reference for further calculations. Another recommendation is given by the German code 
DIN 1055-100 [7]. There, a value of βtarget = 4.7 is given for a 1 year observation period. 
A full probabilistic approach for design is difficult since stochastic models have to be known for 
all basic variables and good prediction models are required. To simplify design, the semi-
probabilistic partial safety concept is applied in most design codes. In this concept, the partial 
safety factors for different basic variables make it possible to account for different scatter of the 
variables. A typical application of partial safety factors is presented by the following equation: 
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where E is load effect and R is resistance. The safety factors, which are greater than unity, are 
represented by γi. 
 



SHEAR STRENGTH OF MASONRY WALLS 
Masonry members subjected to shear show a complex load-carrying behaviour. There is, 
however, a general consensus on the 3 main in-plane failure modes in masonry which include: 
flexural failure (tension at the heel or crushing at the toe), sliding failure in one or multiple bed 
joints, and diagonal tensile failure of the panel, which may be combined with sliding failure of 
the joints.  Cracks are typically diagonal and stepped in nature but may also traverse through 
units as shown below. 

 
Figure 2: Typical failure modes for in-plane shear failure of masonry  

 
For further information on the load-carrying behaviour of masonry walls subjected to in-plane 
shear see [8] and [9]. 
 
ANALYSED WALL 
The wall analysed consists of hollow concrete blocks with dimensions and properties chosen to 
make shear failure become dominant. The hollow blocks are fully grouted to achieve full bond 
with the vertical reinforcement which prevents flexural and sliding failure. Horizontal 
reinforcement is assumed to be placed in every second bed joint, at a spacing of 400 mm. The 
axial load applied to the walls was determined assuming a 20 cm reinforced concrete slab 
spanning over 5 m and supporting dead and live loads of 4.8 kPa each.  This results in an axial 
load of 12.5 kN/m dead load and 12.5 kN/m live load applied to the wall.  The wall is designed 
to reach its full diagonal shear capacity at a horizontal load of 135kN. 
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Figure 3: Analysed wall panel 



 
 
CHOICE OF SHEAR MODEL 
Every model is uncertain and so there has to be a random variable in the reliability analysis 
taking into account the deviations of the prediction model. This basic variable is referred to as 
model uncertainty on the resistance. To obtain realistic results in the reliability analysis, the most 
realistic model has to be chosen. In order to find an appropriate model, i.e. the one which gives 
the least uncertain prediction, several prediction models for the shear capacity of unreinforced 
masonry panels were evaluated by comparison with test data. Here, models from several 
international standards and some scientific models were analysed.  
The Canadian masonry standard, CSA S304.1-04, [10] determines the shear strength based on all 
three modes of failure: flexure, diagonal, and sliding. The US standard, ACI 530-08/TMS 402-
08/ASCE 5-08, [11] is the most similar to the Canadian standard. The only difference is that the 
US standard only includes provisions for sliding shear for reinforced sections for autoclaved 
aerated concrete masonry. The Australian standard, AS 3700-2004, [12] is more simplistic and 
bases the masonry shear stress solely on the aspect ratio of the wall.  It accounts for neither axial 
load nor for sliding shear failure. The New Zealand standard, NZS 4230-2004, [13] is one of the 
more complex models. This model accounts for the shear resistance provided by the masonry, 
reinforcement, and axial load. Eurocode 6 [14] also accounts for the shear resistance provided by 
these three sources, but does not account for sliding failure. Anderson and Priestley [15] 
proposed yet another shear model after a review of the equations proposed by Shing et al. [16] 
and Matsumura [17]. The equation was developed using statistical data fitting. It accounts for the 
degradation of shear strength when the wall is subjected to cyclic loading into the inelastic range. 
This equation also accounts for all three types of shear failure. The National Earthquake Hazards 
Reduction Program (NEHRP) developed an equation similar to that of Anderson and Priestley, 
but with an additional factor, M/(VL), to account for the wall aspect ratio. Finally, [18] 
developed the most recent shear model. This model is based on that of NEHRP, but with some 
modifications. The masonry shear resistance includes a parameter to account for longitudinal 
steel. The shear resistance provided by axial loading was modified to account for a compression 
strut at an angle to the wall axis. This results in a greater contribution from squat walls than 
provided by slender walls. For shear resistance provided by reinforcement, the effective depth 
was reduced due to the assumption that reinforcement at the ends of the wall is not developing. 
Evaluation of the test-to-prediction ratio gives the stochastic parameters presented in Table 2. 
The database consists of test results from walls with large reinforcement ratios. It is found that 
the model according to Anderson and Priestley [15] gives the best prediction due to the small 
CoV and was therefore chosen for further study. 
 

Table 2: Stochastic parameters for Vtest/Vprediction for various models 
 

 CSA 
S304.1-04 

ACI 
530-08 

AS 
3700-
2001 

NZS  
4230-
2004 

EC 6 Anderson 
& 

Priestley 

NEHRP 
(1997) 

Voon & 
Ingham 

St. Dev. 0.44 0.40 0.68 0.36 0.39 0.16 0.38 0.30 
Mean 2.05 1.65 1.64 1.60 1.39 0.97 1.45 1.32 
CoV 0.22 0.25 0.41 0.23 0.28 0.17 0.26 0.23 

 
 



 
STOCHASTIC MODEL 
Every basic variable in the chosen model has to be represented by a stochastic model. 
Commonly, stochastic data requires large databases. Since probabilistic analysis is gaining more 
and more acceptance within the construction industry, the number of stochastic models that can 
be found in the literature increases. In particular, values for material strength can be found more 
easily since strength tests are part of the quality control of producers. However, some values 
such as cohesion are difficult to find due to lack of data. 
 
The reliability analysis was executed using the following limit state function for shear failure: 
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where ΘR,s is the model uncertainty for shear resistance, f’m is the masonry compressive strength, 
ND is axial force due to dead load, NL is axial force due to live load, Ash is the cross-sectional area 
of horizontal reinforcement, fs is the yield strength of reinforcing steel, l is wall length, t is wall 
thickness, s is spacing of horizontal reinforcement, H is horizontal (wind) load and ΘE is the 
model uncertainty for load effects. 
 
The model uncertainties are always major parameters in a reliability analysis. Here, the model 
uncertainty for shear resistance ΘR,s has been chosen on the basis of test data (see previous 
paragraph). The model uncertainty for the load effect ΘE is chosen according to the JCSS 
Probabilistic Model Code [19]. 
 
The horizontal load H is modelled by the Gumbel distribution. This is the extreme value 
distribution of the group of exponential distributions, which includes the Gaussian distribution, 
and therefore the Gumbel distribution is widely used in probabilistic design. Additionally, it 
allows different observation periods T to be considered due to its properties concerning 
variability over time. It was found that while the mean increases the standard deviation stays the 
same for different observation periods. This leads to decreasing CoV (CoV is the ratio of 
standard deviation to the mean) for longer observation periods. Furthermore, the 98%-quantile of 
a 1-year observation is close to equal to the mean of the 50-year observation, as seen in Figure 4. 
Many codes give the unfactored wind load as the one occurring once in 50 years. This is taken as 
the basis for the analysis and this wind load is converted to the wind load for a 1-year 
observation. 
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Figure 4: Gumbel distribution for different observation periods [1] 
 
The mean values for dead and live load are also chosen to represent the characteristic values 
according to current codes on the basis of the distributions and coefficients of variation (CoV) 
given in Table 3.  
 
The stochastic model includes four kinds of probability distributions: the aforementioned 
Gumbel, and the Gaussian, lognormal and Gamma distributions. The Gaussian distribution 
allows for negative and positive values and is widely used within every field of engineering. 
However, negative values for material strength and other parameters are not logical. Therefore, 
the lognormal distribution which only permits positive values is used for material strengths and 
model uncertainties. The Gamma distribution is used to determine the point-in-time value of the 
live load and so to account for favourable effects  
 

Table 3: Stochastic Model Parameters 
 

Basic variable Type of distribution Mean CoV 
ΘR,s lognormal 0.97 [-] 17 % 
ΘE lognormal 1.0 [-] 10 % 
H Gumbel 0.075 31 % 
fs lognormal 430 MN/m² 4 % 
fm lognormal 14.1 MN/m²  20 % 
NG Gaussian 0.025 MN 3 % 
NQ Gamma 0.063 MN 100 % 
l constant 2.0 m - 
t constant 0.19 m - 
h constant 3.0 m - 

Ash constant 127.0 mm² a) - 
Asv constant 607.0 mm² - 

a) spacing of 400 mm 
 
The parameters have been estimated on the basis of [19] and [20]. For the parameters of the 
distribution of the masonry compressive strength refer to [1] and [22]. 



 
RESULTS AND ASSESSMENT 
The reliability analysis was performed using the Software COMREL [23] which includes various 
procedures. For this analysis, SORM was used. 
 
The governing parameter of a masonry wall subjected to in-plane shear is the wall length lw. In 
Figure 5, the reliability index β is shown versus the wall length. It can be seen, that the reliability 
increases non-linearly with growing wall length. Additionally, it can also be seen that the wall 
length of 2.0 m is enough to provide sufficient reliability since the target reliabilities according to 
DIN 1055-100 and JCSS are exceeded for l = 2.0 m. To reach the target reliabilities, wall lengths 
of 1.64 m (JCSS) and 1.98 m (DIN 1055-100) are sufficient. Further research and development 
of the prediction models therefore might lead to economic enhancement of the walls. 
 
Flexural failure was also included in the analysis but did not dominate due to the design of the 
wall. The analysis was executed for an observation period of one year. 
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Figure 5: Reliability index β vs. wall length 
 
Another outcome of the reliability analysis is determination of the sensitivity values αi. These 
values define the design value of a basic variable together with the reliability value β and the 
standard deviation σ. The sensitivity values can be seen as a measure for the influence of a basic 
variable on the reliability; the larger the sensitivity, the larger the influence. As expected, the 
horizontal load H is the parameter with the largest influence. DIN 1055-100 gives an estimate for 
the sensitivity of load effects of αE = 0.8. The obtained value meets this recommendation. The 
model uncertainties have the second largest influence which underlines the importance of precise 
prediction models. 
 
 
 



Table 4: Sensitivity values for Hk = 135 kN 
 

Basic variable Sensitivity value α 
ΘR,s 0.44 
ΘE -0.27 
H -0.83 
fs 0.03 
fm 0.19 
ND 0.02 
NL 0.04 

 
Additionally, the values αi can be used to calculate the partial safety factors. These are defined as 
follows: 
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where Ed is the factored load effect, Ek is the corresponding characteristic value, Rd is the 
factored resistance and Rk is the characteristic value of the resistance. 
 
The characteristic values represent quantiles of the respective probability distribution of a basic 
variable. The design values can be determined depending on the sensitivity values, the target 
reliability, mean and standard deviation of every basic variable. Since every distribution requires 
different equations, refer to [20] for further information. 
 
The obtained partial safety factors can be taken from Table 5. Compared to the recommendations 
of CSA S304.1-04, it can be seen that the required factor on the horizontal load to reach the 
target reliability according to the JCSS [6] is larger than the recommendation. The fact that the 
required partial safety factor on the live load is supposed to be larger, has often been examined in 
reliability analysis, see [1] and [24]. However, the favourable effect of the live load and the 
larger safety factor on the masonry strength equalize the effects of the small safety factor on the 
horizontal load. 
 

Table 5: Partial Safety Factors for βtarget = 4.2 
 

Basic variable Partial Safety Factor Recommendation of 
CSA S304.1-04 

H 1.78 1.50 
fm 1.25 1.667 
fs 1.26 1.176 

ND 0.75 0.90 
 

Note that the live load is not to be applied in design since it is acting favourably. However, it is 
included in the reliability analysis to account for the permanently existent part of the live load. 
So, neglecting the live load in design is an additional element of safety. 



 
CONCLUSION 
In this paper, the reliability of a reinforced masonry shear wall was analysed. Therefore, several 
models were compared to test data to find an appropriate theoretical model for analysis. The 
model of Anderson & Priestley [15] was found to provide the best match to the experimental 
data available. A stochastic model was set up and the analysis was performed by application of 
SORM. The reliability index β was computed and compared to recommended values. It was 
found that the wall provides sufficient reliability so that further optimization is possible. Partial 
safety factors were provided and compared to the recommendations of the CSA.  
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