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ABSTRACT 
In this article, a computationally efficient numerical (finite element) technique is presented to 
simulate the in-plane behaviour of partially grouted reinforced masonry structures with the main 
focus on single-storey masonry shear walls. An orthotropic smeared crack model is employed 
with the masonry and reinforcing steel bars represented using adjoining overlaid elements. The 
interface of mortar joint and masonry unit is modelled using a plasticity model. The proposed 
model also includes the effect of buckling of vertical reinforcement in the compression zone. The 
capability of the model in predicting response of partially grouted-reinforced masonry shear 
walls under in-plane loading is evaluated by direct comparison to experimental results. In 
general, acceptable accuracy was observed in numerically predicted lateral load carrying 
capacities and load-displacement curves in both pre- and post-peak regimes.  
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INTRODUCTION 
Previous studies on fully grouted masonry shear walls under in-plane loading [1,2] have shown 
that using a smeared crack model with no distinction between masonry units and mortar joints 
can produce reliable numerical results. This is mainly because grouting diminishes the 
anisotropy caused by mortar joints. However, in unreinforced or partially grouted reinforced 
masonry shear walls, one of the dominant failure modes is debonding and slippage at unit-mortar 
interfaces. This necessitates considering mortar joints as a secondary material phase. In this 
paper, the behaviour of partially grouted reinforced masonry is modelled using a smeared crack 
model combined with quadrilateral interface elements representing mortar joints. The model also 
includes the effect of inelastic buckling of vertical reinforcement in the compression zone. To 
evaluate the performance of the model, numerical predictions are compared to experimental 
results.  
 
 



MODEL FOR MASONRY 
In the smeared crack approach, masonry units are represented by similar constitutive relations 
along the axes of orthotropy that are modified following cracking. These axes coincide with the 
principal directions of total strain and are continuously updated during analysis. Once the 
principal tensile stress exceeds the uniaxial tensile strength of masonry in one direction, cracking 
initiates in the normal direction and the constitutive relations along the existing principal axes are 
updated [4,5]. 
 
Due to the Poisson’s effect and microcrack confinement, biaxial stresses alter the strength and 
constitutive characteristics of masonry compared to those for uniaxial loading. In order to 
include this behaviour, the masonry strength in each principal direction is modified using the 
following equations (see Figure 1-a):  
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where f’m is the uniaxial compressive strength of masonry and εo is the strain at f’m. The 
parameter fp is the equivalent compressive strength of biaxially loaded masonry and εp is the 
corresponding strain at fp. The modification factor, λ, is defined based on the ratio of principal 
stresses or principal strains at each point. According to the model originally proposed by Kupfer 
et al. [6], for a compression-compression biaxial state of stress, λ acts as an amplification factor 
increasing the uniaxial compressive strength of masonry based on the following equation  
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where σ1 and σ2 are the principal stresses. The parameter Ao is used to adjust the model for 
different material properties and a value of 3.65 was suggested [6] for concrete. Under a tension-
compression state of stress, the compressive strength of masonry decreases. In this case, λ 
defines a reduction factor based on the following set of equations [2]:  
 

 
(a) Compression zone  

(modified under biaxial state of stress) 

 
(b) Tension zone 

 
  

Figure 1: Stress-strain relationships for masonry 
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where εtens. and εcomp. are the principal tensile and compressive strains, respectively. In the 
tension-tension biaxial combination of stresses, the tensile strength remains equal to the uniaxial 
properties in both directions of principal strain.  
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The uniaxial stress-strain relation of masonry, shown in Figure 1-a, is expressed by the following 
equations [2]: 
The uniaxial stress-strain relation of masonry, shown in Figure 1-a, is expressed by the following 
equations [2]: 
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The parameters A1, A2, A3, and A4 control the shape of the curves and can be adjusted base on 
masonry’s behaviour under uniaxial compression. The parameters εe, fe and γ control the 
transition from the curve defined by Equation 5 and the one defined by Equation 6 where ε  is 
the point of tangency calculated based on the following equation: 
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It is documented that the failure of a masonry shear wall is mainly initiated by crushing of the 
compressed toe followed by degradation of the wall’s load resistance [7]. The onset of crushing 
exposes the embedded vertical reinforcing steel bars which then may be subjected to large out-
of-plane deformation due to inelastic buckling resulting in rapid degradation of strength at the 
toe of the wall. For a partially grouted reinforced masonry shear wall, this effect can be quite 
critical since the large spacing between columns of grouted cells means that crushing and bar 
buckling in one cell causes a significant decrease in wall strength; the adjacent ungrouted cells 
cannot compensate effectively for the loss of loadbearing area. This can play a key role in 
defining the softening response of this type of masonry shear wall after reaching the peak load. 
Thus, for an accurate simulation of post-peak response of a partially grouted reinforced masonry 
shear wall, it is necessary to include both the masonry crushing and the effect of buckling of 
compressive steel reinforcement in the material model of reinforced masonry.  
 
To investigate the behaviour of the compression toe of a partially grouted reinforced masonry 
shear wall after buckling of embedded vertical reinforcement, a series of uniaxial compressive 
tests [4] were carried out on reinforced and unreinforced masonry prisms filled with grout. The 
prisms were three-blocks high and a half-block long simulating the exterior column of grouted 
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cells in the extreme compression zone of a partially grouted reinforced masonry shear wall as 
shown in Figure 2. The comparison between the stress-strain relations of the reinforced and 
unreinforced grouted specimens, as presented in Figure 3, indicates almost linear strength 
degradation associated with buckling of vertical reinforcement. Accordingly, to reflect this 
behaviour in the material model used for reinforced masonry, a linear descending branch is 
added to the end of the stress-strain relation of both masonry and steel within a specified strain 
range. This behaviour, illustrated in Figure 1-a (also see Figure 4), is defined by: 
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Figure 2: Simulation of compressive toe in the experimental study 

 

 
Figure 3: Average stress-strain curves obtained from prism tests 

Stress in Steel Bar Reinf. Ratio×

 
In this equation, εb defines the strain at which buckling starts and σbm is the corresponding stress 
value determined by Equation 6. The parameter A5 defines the strength degradation rate due to 
buckling of a compressive steel bar. According to this model, once strain in masonry reaches the 
bar buckling limit specified by εb, the compressive strength of masonry reduces to zero in a 



strain interval approximately equal to: 
 

3 5/b mA f AεΔ =
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In this equation, the small exponential terms of Equation 6 are neglected. Similar linear 
degradation, described in the following section, is assumed for axial resistance of the vertical 
steel bar at the compressed toe.  

 
The stress-strain relation of masonry in tension is assumed to be independent of lateral 
compressive stress and is defined by a linear behaviour prior to cracking followed by an 
exponentially descending branch (Figure 1-b).  This relation is defined by:  
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The parameter β controls the lower limit of the exponential branch and α incorporates the effect 
of tension stiffening [2] where εcr is the strain at which masonry cracks. The constitutive model 
used for masonry prior to tensile cracking is defined by [2]: 
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where E1 and E2 can be either the secant or the tangent moduli of elasticity in the directions of 
the principal axes of total strains. The parameter ν is Poisson’s ratio and G is the shear modulus. 
After tensile cracking, due to loss of correlation between deformations in the principal directions 
the diagonal terms in the constitutive matrix vanish. 
 
MODEL FOR STEEL 
As shown in Figure 4, the stress-strain relationship for steel before and after yielding is 
represented by an idealized bilinear strain hardening behaviour that is assumed to be identical in 
tension and compression. Similar to the masonry model, the effect of buckling of the reinforcing 
steel bar is simply represented by a linear descending branch attached to the stress-strain curve of 
steel in compression. This behaviour is consistent with the experimental evidence provided by 
the uniaxial compression tests on reinforced masonry prisms [4]. Strength degradation due to 
buckling of the reinforcement starts at ε  which is the same buckling strain as defined in the 
masonry model. The degradation rate of the reinforcing steel bar is defined by: 
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where σbs is the stress corresponding to εb at which point buckling initiates and σr is the residual 
stress in the reinforcing bar after buckling. Parameter Δb was previously defined by Equation 9.  



 

 

 
Figure 4: Uniaxial stress-strain relation for 

 
Figure 5: Yield surface and evolution of 
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ODEL FOR UNIT-MORTAR INTERFACE 
ropy in masonry due to the presence of mortar 

INITE ELEMENT PROGRAM 
, described in the previous sections, are implemented in a 

VALUATION OF THE PROPOSED MODEL 
ulating the response of five partially grouted 

steel stic potential for unit-mortar interface [8

M
To accommodate the effects of the inherent anisot
joints, a constitutive model is incorporated in a plasticity framework. The model, adopted from 
Lotfi [8], includes initiation and propagation of fracture along the unit-mortar interface under 
combined normal and shear stresses and incorporates joint dilatancy. As the elastic limit, the 
yield criterion is described by a three-parameter hyperbolic surface that provides a smooth 
transition between the Mohr-Coulomb and tension-cut-off yield criteria (Figure 5). The dilatant 
behaviour, originating from the roughness of the fractured surfaces, is also included using a 
nonassociated flow rule. The evolution of the plastic potential surface is illustrated in Figure 5. 
In this model, the softening behaviour of the unit-mortar interface is governed by preserving the 
Mode-I and Mode-II fracture energies per unit volume during strength degradation [8].  
 
F
The nonlinear constitutive relations
displacement-driven finite element program developed as part of this study. Plane stress, 
isoparametric, eight-noded elements are used for the masonry blocks and plane stress, six-noded 
contact elements are used for the unit-mortar interface. The elastic behaviour of the joints is 
considered in the stiffness matrix of interface elements. As illustrated in Figure 6, the 
contributions of horizontal and vertical steel reinforcement are included using an adjoining 
overlaid element. Despite the assumption of perfect bond, the interaction between grout and steel 
bar is implicitly considered in the tension stiffening model of the masonry. Since the 
conventional or modified Newton-Raphson iteration scheme fails to converge in the vicinity of 
peak loads, the arc-length incremental algorithm [9] is employed as the solution strategy and a 
convergence criterion based on the norm of nodal displacement vectors is used with a 
convergence threshold of 0.001 [2,8]. 
 
E
The performance of the model was evaluated by sim
reinforced masonry shear wall tests under combined axial and lateral loading [4]. Details of the  
testing program and their results are reported in a companion paper [3] in this symposium. The 
finite element model for Wall 1 of the test walls, as a typical model used to simulate the 
behaviour of partially grouted reinforced masonry shear walls with aspect ratio of one, is 



illustrated in Figure 7. Shear walls are modelled using eight-node elements for masonry and six-
node interface elements for mortar head and bed joints. The properties of the top row of elements 
for each wall together with the “mortar head joints” between these elements are modified to 
represent the effect of the relatively rigid loading beam utilized in the experiments. These 
loading beam elements are assumed to behave in a linear elastic manner with a relatively high 
dummy value for the elastic moduli (i.e., 100 times higher than masonry elements). The top 
nodes also are programmed to have equal displacement in the ‐x direction. The nodes at the 
bottom of the finite element model are restrained against displacements in both the x- and y-
directions assuming perfect contact between the shear wall and the concrete base.  

 

y 

 
Figure 6: Layered element employed for 

 
Figure 7: Finite element model for Wall 1 

 
ATERIAL PROPERTIES 

or the masonry elements are presented in Table 1. The uniaxial 

a

wing to the similarity of the constituent material and construction conditions, the initial tensile 

x 

reinforced masonry model  

M
The material properties used f
compressive strength, f’m, and the corresponding masonry strain, εm, are chosen based on the 
results of the uniaxial compressive tests on four-block-high masonry prisms constructed at the 
same time as shear walls. The tensile cracking strength of ungrouted masonry units, fcr, is set to 
fcr=0.1 f’m recommended for masonry materials [7]. The constitutive parameters concerning the 
stress-strain relationship and biaxial strength envelope of masonry (Ao, A1, A2, A3, A4, and α and β) 
are adopted from other similar studies [1,2,5].The parameters related to the effect of bucking of 
reinforcing steel bars in the compression zone are based on the results of the uniaxial 
compression tests of the reinforced masonry prisms shown in Figure 3. A value of  
εb = 2.5εy is used as the initial buckling strain and the degradation rate is set to A5 = 640 MPa 
ccording to the auxiliary test results. The buckling is assumed to be completed in a strain 

interval of Δb = 2.5εb. 
 
O
bond strength, so, initial cohesive strength, ro, and initial shear friction coefficients of the unit-
mortar interface elements, presented in Table 2, are based on experimental and numerical studies 
of the behaviour of partially grouted reinforced concrete masonry panels under in-plane diagonal 
loading [4,5]. The remainder of the parameters, defining the shape of the yield and plastic 
potential surfaces along with the softening rules, are adopted from Lotfi [8]. Similar to other 
studies [8], the elastic properties of the mortar are adjusted to reproduce the initial stiffness of 
Wall 1 and remained the same for the other test walls. The geometric and mechanical properties 



for steel bars obtained from the tensile tests are presented in Table 3. 
Table 1: Material properties for masonry  Table 2: Material properties for mortar joints 

  
Masonry Property Hollow Grouted 

mf ′  (N/mm2) 21.1 12.0 

mε  (mm/mm) 0  0  .0013 .0013

crf  (N/mm2) 2.65 1.2 

mE 2 2 (N/mm2) 0000 0000 

v  0.16 0.16 

α  0.5 0.2 

β  0.1 0.1 

oA  3.65 3.65 

1A  2.0 2.0 

2A  2.0 2.0 

3A  0.1 0.1 

4A  0.6 0.6 
 

Joint Properties Bed Joint Head Joint 

nnD  (N/mm2/mm) 400 400 

ttD  (N/mm2/mm) 200 200 

0s  (N/mm2) 0.8 0.6 

 (N/mm2) 0.8 0.6 0r

rr 0  0   (N/mm2) .035 .035

μ0  0.95 0.75 

 0.60 0.45 rμ

, β  (mm/N) α 11.4 11.4 
η  0.1 0.2 

min
fG × 10-3 (N m/mm2) .m 0.8 0.45 

× 10-3 (N.mm/mm2) 4.0 2.25 f
IG

 × 10-3 (N.mm/mm2) 40 22.5 f
IIG

 

 
Table 3: Geometric and mechanical properties of steel reinforcement 

 

Bar Type Area 
(mm2) 

Es 
(G ) Pa

fy εy 
(M ) Pa (mm/mm) 

No. ze) 10 (CA Si 100 201.6 491.7 0.0024 

No. 3 (USA Size) 71 201.0 485.0 0.0024 

No. 4 (USA Size) 126 201.8 564.7 0.0028 

D3 (USA Size) 19.4 183.6 743.7 0.0041 

D4 (USA Size) 25.8 198.2 690.7 0.0035 
 

 
UMERICAL VERSUS EXPERIMENTAL RESULTS 

al top displacement of the test walls 

he numerical and experimental load-displacement curves for Wall 1 are shown in Figure 8 as 

 the finite element simulation of the Wall 1 test, buckling of the compressive steel bar 

N
The ultimate load carrying capacity and corresponding later
predicted by the numerical model are presented in Table 4 along with the values measured 
during the tests. The ultimate strengths of the walls indicate that wider bar spacing corresponds 
with slightly lower wall strength. It can also be seen that less than 10% difference exists between 
the numerical estimations and the measured values.  
 
T
an example. The envelopes of the experimental hysteresis loops in both the push and pull 
directions are used as the experimental load-displacement curves. As shown, satisfactory 
agreement exists between the predicted load-displacement responses and the actual behaviours 
during the test. Similar agreement is also found between numerical and experimental load-
displacement curve of the other shear wall tests.  
 
In



(εcomp.>εb), located in the bottom right corner masonry element, started shortly after reaching the 
maximum load resistance of the wall (after approximately 5% load degradation). At 
approximately 4 mm top displacement, crushing (εcomp.>εp) covered more than 50% of the 
integration points of the bottom right corner masonry elements. This agrees fairly well with the 
average top displacement at which the bottom corner blocks at both toes of the actual test wall 
ARE crushed [4]. Similar agreement IS also observed for the other test walls. 
 

Table 4: Numerical and experimental results for shear wall tests 
 

Shear Wall Experimental Num. / Exp. 
(  Bar Spacing)
[Aspect ratio] 

Property Numerical 
ush PullP  Push Pull 

Wall 1 
(  

Ultimate Load 94.71 kN 9  9  
855 mm)

[1.0] 

1.2 kN 6.9 kN 1.04 0.98 

Top Disp. 2.42 mm 2.88 mm 2.88 mm 0.84 0.84 
Wall 2 

(  
Ul  

570 mm)
[1.0] 

timate Load 96.73 kN 103.7 kN 93.2 kN 0.93 1.04 

Top Disp. 2.40 mm 4.50 mm 3.24 mm 0.53 0.74 
Wall 3 

(1 ) 
Ul  

710 mm
[1.0] 

timate Load 91.53 kN 96.7 kN 84.4 kN 0.95 1.08 

Top Disp. 3.49 mm 3.60 mm 2.34 mm 0.97 1.49 
Wall 4 

(  
Ul  

855 mm)
[0.5] 

timate Load 122.3 kN 114.2 kN 122.9 kN 1.07 1.00 

Top Disp. 0.52 mm 0.80 mm 0.81 mm 0.65 0.64 

Wall 5 
(  855 mm)

[1.5] 

Yield Load 70.0 kN 70.5 kN 73.2 kN 0.99 0.96 

Top Disp. 4.76 mm 6.03 mm 6.87 mm 0.79 0.69 

Ul  timate Load 72.8 kN 79.1 kN 84.3 kN 0.92 0.86 

Disp. 5.58 mm 8.91 mm 10.8 mm 0.63 0.52 
 

 

 
Figure 8: Experimental and finite element load-displacement 

responses for Wall 1 (aspect ratios =lh 1.0) 
ses of Walls 1, 2, 3 and 4 predicted siThe finite element analy milar failure modes for each wall. 

Horizontal tensile cracking started to propagate at the bottom courses of the walls at about 50% 
of the ultimate load. The failure modes of the walls were characterized by crushing of the 



compression toes and buckling of compressive reinforcing steel bars followed by widening of 
joint cracks. No major yielding or buckling of steel bars was detected in the finite element model 
of the wall; this is consistent with experimental observations and the shear dominated failure 
mode for this wall. As indicated in Table 4, only Wall 5 (aspect ratio 1.5) experienced tensile 
yielding before reaching the peak load. This also is in close agreement with the experimental 
results.  
 
CONCLUSIONS 

us models developed in reinforced and unreinforced masonry studies, a 
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