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ABSTRACT 
 
This paper provides an evaluation of the capability of a layered finite element model using 
smeared crack approach to capture the behaviour of fully grouted fully reinforced masonry shear 
walls subject to in-plane loading. Tension stiffening, compression softening, as well as strength 
degradation of the grouted concrete block parallel to the crack direction are included in this 
model. The comparison between analytical and experimental results showed good agreement in 
prediction of pre- and post-peak response for different failure modes, although in shear 
dominated failure some differences were observed. 
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INTRODUCTION 
Significant heterogeneity and anisotropy of masonry structures resulting from the presence of 
clay or concrete units, mortar, grout, and steel bars have created one of the most challenging 
composites for numerical simulation. In addition to the variety of the constituent component, the 
highly nonlinear and asymmetric stress-strain relationship of the materials and great complexity 
of the interaction between them have increased the number of difficulties in developing an 
accurate modelling method that can adequately predict the behaviour and different modes of 
failure of this system of construction. Nevertheless, to date, diverse types of numerical 
techniques have been developed to enhance the basic understanding of the pre- and post-peak 
responses of masonry components with particular emphasis on shear walls as the main lateral 
loadbearing elements in “box” type buildings.  
 
A finite element model that accounts for the nonlinear behaviour of masonry was developed and 
applied to solid masonry by Page [1] in 1978 from the analogy of the behaviour of masonry 
assemblages and jointed rocks. Subsequently, many researchers have developed various 
homogenized [2] and heterogenized [1, 3, 4] modeling methods to capture the in-plane and out-
of-plane response of masonry shear walls.  
 



 

A recent technique for modeling reinforced concrete and masonry uses a layered finite element 
based on smeared crack model in which idealized layers of concrete and steel represent the 
actual behaviour of the corresponding constituent material and the cracking effect is assumed to 
be smeared over the entire hybrid element [3, 5]. This paper contains an evaluation of using this 
technique in predicting behaviour of fully grouted reinforced masonry shear walls. Tension 
stiffening, compression softening as well as strength degradation parallel to the crack direction 
are included in this model. Since other studies show that the solid grout and concrete masonry 
units form the bulk of the masonry, the anisotropy and plane of weakness introduced by mortar 
joints are neglected [3]. 
 
ANALYTICAL MODEL 
The proposed smeared crack approach is known as the rotating crack model in which the 
principal axes of stress and strain are continuously updated prior to and after cracking. 
Experimental evidence [6] has shown that, due to aggregate interlock forces along the crack 
surface and dowelling action of reinforcement bars, using a fixed crack model can be misleading 
especially for walls subjected to dynamic or cyclic loadings. The adopted smeared crack model 
and the constitutive relations of the materials are described in the following sections.  
 
STRENGTH FAILURE ENVELOPE  
In shear dominated components like panels and shear walls, various combinations of biaxial 
principal stress ( ,σ σ1 2 ) exist due to combined axial and lateral load resulting in different 
behaviour compared to uniaxial loading. A Compression-compression biaxial state of stress 
offers microcrack confinement and increases the uniaxial compressive strength of masonry, mf ′ , 
according to the following model proposed by Kupfer et. al. [7] and also used in TCCMAR 
research program [5]:  
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where εo is the uniaxial strain corresponding to uniaxial compressive strength mf ′ , pε and pf  are 
the peak compressive strain and stress of the masonry after biaxial stress enhancement, andλ  is 
the strength modification factor. The parameter 0A is used to calibrate the model based on the 
material properties. The suggested value [7] is 0 3.65A =  for concrete. Although it is employed 
here, further studies need to be conducted for masonry applications.  
 
On the other hand, a tension-compression stress state can significantly reduce the peak strength 
of masonry in compression. Tests on reinforced concrete panels [8] show that this reduction is a 
function of lateral tensile strain, ε1 , rather than equivalent tensile stress, σ1 , at the instant of 
cracking. The following equation [8] employs β  as a reduction factor to define this behaviour. It 
is also assumed that the elastic behaviour in tension is not affected by lateral compressive stress. 
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In the tension-tension biaxial combination of stresses, the tensile strength remains equal to the 
uniaxial tensile strength in both directions of principal strains. 
 
STRESS-STRAIN RELATIONS IN PRINCIPAL DIRECTIONS 
In compression, the stress-strain relation shown in Figure 1, is similar to others widely used in 
concrete and masonry research [3, 9, 10]. The initial parabolic relation is followed by a strain 
softening branch which smoothly links to an exponential tail at very high strains. The equations 
adopted from TCCMAR research program [5] for behaviour of masonry in compression are: 
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where A1 controls the shape of the rising branch and its value can range from 1.0 to 2.0 (A1=1 
defines a straight line from the origin to the peak strength and A1=2.0 gives a parabolic shape to 
the curve). A2 controls the shape of the initial falling branch and its value can be greater or equal 
to 1.0. A3 alters the lower limit of the exponential falling branch and its value can vary from 0.0 
to 1.0.  The exponential tail at Equation 9 is attached to Equation 8 at eε  and ef is the 
compressive stress at point of tangency. eε  is determined by the following equation: 
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where A4 is a shape factor defining the location of the initial point of the exponential tail. The 
exponential parameter,γ , is determined so that Equation 9 becomes tangent to Equation 8 at eε . 
The parameterγ is defined by: 
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According to Equations 2, 3, 5 and 6, the compressive strength and corresponding peak strain 
increases when the masonry is confined by the biaxial compression stress state and decreases due 
to lateral tensile stress normal to the principal compressive direction. This implies that, based on  
 



 

        
Figure 1 – Stress-strain curve of masonry 

in compression 
Figure 2 – Strength reduction effect of 

masonry 
 

the current state of principal stresses and strains, the constitutive relations are continuously 
updated during the analysis at each step (Figure 2). 

 
In tension, even after a part of the masonry shear wall cracks, the uncracked section retains its 
capability to resist tensile stress because of the continuity provided by the reinforcing bars. This 
reserve post-crack strength in tension is known as tension stiffening. Vecchio and Collins [8] 
described this effect by an exponentially descending branch attached to the cracking point of the 
stress-strain curve for masonry, ( ,cr crfε ), in tension (Figure 3). Consistent with this approach, 
the stress-strain relation of masonry in tension, including the tension stiffening model in this 
study, used in TCCMAR research program [5], are defined by: 
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where 1B  controls the lower limit of the exponential branch andα incorporates the effect of steel 
percentage. The extra stiffness provided by this effect has to reduce to zero once steel reaches its 
uniaxial yield strain. Table 1 contains suggested values for 1B and α  in reinforced concrete 
models [5]. Modification may be required for the masonry to obtain an accurate estimate for 
these parameters.  
 
The failure surface for steel is simply represented by a bilinear strain hardening behaviour which 
is identical in tension and compression (Figure 4). Since the reinforcing bars are simulated as 
one-dimensional elements, this model will remain aligned with the bar directions during the 
analysis. The plastic modulus, spE , in this model is defined by a bilinear coefficient, ζ , which is 
independent of level of stress and strain: 
 

 sp sE Eζ=   Equation 14 
 



 

 
Figure 3 – tension stiffening model 

 
 

 
Table 1 - Suggested values for B1 and α [5] 

 

Percentage of 
Steel ( )%ρ,  α  1B  

0.25 0.06 0.38 
0.35 0.10 0.48 
0.50 0.18 0.5 
0.75 0.25 0.5 

 

      
   Figure 4 – Stress-strain curve of steel                           Figure 5 – Smeared crack model 

 
 
CONSTITUTIVE AND STIFFNESS MATRIX 
The constitutive model for masonry is based on orthotropic bimodular behaviour using 
equivalent uniaxial stress-strain relations along the axes of orthotropy which coincide with the 
directions parallel and perpendicular to cracks (Figure 5). The constitutive model used for 
masonry is comprised of two stages. The first stage is applicable prior to tensile cracking and 
follows the model presented by Darwin and Pecknold [10]:  
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where E1 and E2 are the secant moduli of elasticity in the directions of principal axes of strains. 
ν is the Poisson’s ratio and G  is the secant shear modulus. The off diagonal non-zero terms 
correspond to the effect of biaxial loading due to lateral tension or compression. However, zero 
diagonal terms show that interaction between shear and normal strains has been neglected for 



 

simplicity and computational efficiency. After tensile cracking, the constitutive relation is 
changed to: 
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Since the described masonry constitutive matrix is defined along the local principal axes of 
strains, this matrix needs to be transformed to the global coordinate system following the 
transformation relations: 
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where θ  is the inclination between the maximum principal axis and the global x-axis.. The 
constitutive matrix of steel which is normally aligned with the global x- and y-directions is 
defined as: 
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where sxE and syE are the secant moduli of steel in the x- and y-directions respectively. The 
global constitutive matrix is constructed by adding the two foregoing matrices: 

 
global = +m sD D D   Equation 20 

 
FINITE ELEMENT PROGRAM AND SOLUTION ALGORITHM 
The finite element program utilizes a plane stress, isoparametric, quadrilateral, eight-node 
element with the nonlinear constitutive relation and biaxial strength envelope as described in the 
previous sections. 3 x 3 Gauss points is used. The effect of steel bars is smeared over the 
masonry elements using an adjoining layer connected to the masonry element at each node 
(Figure 6). It assumes that steel and masonry have perfect contact. However, bond-slip between 
masonry and steel is included through the tension stiffening model of the masonry. While 
masonry and reinforcement are described separately, the overlaid elements are treated as one 
combined element in the FE program. 
 
In order to predict both the pre- and post-cracking response, a solution strategy that is not 
sensitive to an overall negative stiffness expected to occur in the post peak region is required. 
Since the conventional or modified load control Newton-Raphson algorithm often fails to 



 

converge in the vicinity of the peak point, the arc-length incremental scheme [11] has been 
adopted as the solution strategy. A convergence criterion based on the magnitude of nodal 
displacements is employed. To prevent numerical instabilities and achieve adequate accuracy in 
the program, the convergence tolerance was set to 0.001 which has been recommended by other 
researchers [3, 9]. A premature termination was enforced when slow convergence was observed 
during the iteration process. 
 
 

 
Figure 6 – Overlaid element of steel and concrete 

 
EVALUATION TESTS 
To evaluate the correlation of the analytical results with experimental data, six walls tested at 
University of Colorado as part of the TCCMAR research program [5] were selected. The walls 
were 1.8 m wide, 1.8 m high and 140 mm thick made of 6 inch concrete block units. Bond beam 
units were used throughout, which allowed the grout to completely fill the head joints. The 
vertical and horizontal reinforcement were relatively uniformly distributed in both directions and 
walls were fully grouted. The horizontal reinforcement was anchored to the extreme vertical 
reinforcement using 180-degree hooks. The walls were fabricated on a reinforced concrete base 
that was properly fixed to the floor. The loadings consisted of a constant vertical axial load and 
lateral shear load controlled by displacement increments. The reinforcement ratios and their 
properties including axial load for each wall are shown in Table 2.  
 

Table 2 – Properties of the walls selected for evaluation test 

Vertical Reinforcement Horizontal Reinforcement Wall 
No. Qty. ( )%sρ  fy 

(MPa) 
fu 

(MPa) Qty. ( )%sρ  fy 
(MPa) 

fu 
(MPa) 

Axial 
Load 
(MPa) 

6 5 15M 0.38 442 711 5 10M 0.14 400 587 0 

4 5 20M 0.74 490 711 5 10M 0.14 400 587 0 

12 5 15M 0.38 442 718 5 13M 0.24 462 738 0.69 

5 5 20M 0.74 490 711 5 10M 0.14 400 587 0.69 

2 5 15M 0.38 442 711 9 10M 0.24 386 566 1.86 

3 5 20M 0.74 511 766 5 10M 0.14 386 566 1.86 

Steel 

Masonry 



 

The material properties used in the analysis were as follows: Uniaxial compressive strength 
mf ′ = 20.1 MPa, Strain at peak strength ε =o 0.0026mm/mm, Tensile cracking strength crf = 0.7 

MPa, Elastic modulus of masonry mE = 20,000MPa, Poisson’s ratio ν =0.16 and Reinforcement 
hardening parameter of ζ = 2% . Referring to Table 1, the tension stiffening parameter was 
chosen between 0.08 and 0.25 based on the steel ratio. Regarding the parameters describing 
constitutive relation and failure envelope, the following values were used in the analysis [5]: 

 
1 2 3 43.65,   2.0,   2.0,   0.1,   0.6A A A A A= = = = =o  Equation 21 

 

 
Figure 7 – Finite element model of the tested walls 

 
As shown in Figure 7, the wall was modelled using 36 eight-node quadrilateral elements. The 
model included the concrete base and top beam simulated as relatively rigid members using 
elastic plane stress elements with much higher elastic modulus compared to the value used for 
masonry. The wall was restrained at the bottom in both the x- and y-directions. To simulate the 
boundary conditions of the top beam, all nodes at the top level were constrained to have equal 
displacement in the x-direction. The constant axial load was applied from the beginning of the 
analysis and an adaptive displacement controlled loading scheme (based on the arc-length 
algorithm) was employed as a solution strategy. A maximum of 30 iterations and a convergence 
threshold of 0.001 were selected in this regard.  
 
Figure 8 shows the load-deflection curves for monotonically applied loading obtained from the 
FE analyses versus the cyclic response of Walls 6 and 3. Stable hysteresis loops and low 
degradation of stiffness in Wall 6 (Figure 8-a) correspond to a flexural failure which is closely 
predicted by the finite element analysis. On the other hand, presence of the axial load and 
increase of vertical steel changed the mode of deformation from a ductile flexural mode to a 
brittle shear mode in Wall 3 (Figure 8-b). Considering both halves of the hysteresis loops, the 
overall comparison indicates good agreement between experimental results and analytical 
predictions in terms of initial stiffness and ultimate strength especially for the flexural failure 
mode. As was expected, the results show some discrepancies due to the different load histories 
(monotonic versus cyclic). Cyclic loading gradually softens and degrades the masonry response. 
In monotonic loading, the integrity of the wall is not pre-damaged by reversing cycles and, 
therefore, higher strength and lower ductility are achieved. The overall results at the peak loads 
for all six tests are presented in Table 3 and Figure 9.  



 

         
(a) Flexural failure mode (Wall 6)                        (b) Shear failure mode (Wall 3) 

Figure 8 – Load-deflection path of analytical model and experiments  
 

Table 3 – Comparison of experimental and analytical results in terms of peak load 
Test Results 

Wall No. Positive Peak 
Load (KN) 

Negative 
Peak Load 

(KN) 

Analysis 
Result 
(KN) 

Failure 
Mode 

6 231 214 262 F 
4 320 387 390 F 
12 316 316 311 F 
5 396 374 412 F 
2 369 436 385 SH 
3 445 467 463 SH 
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Figure 9 – Analytical peak loads versus average experimental results  



 

SUMMARY AND CONCLUSION 
The objective of this study was to evaluate use of the smeared crack approach for the nonlinear 
FE analysis of reinforced masonry walls subject to in-plane shear and axial loads. A layered 
finite element model was utilized where masonry and reinforcement were modelled separately 
using plane stress overlaid hybrid elements. Masonry was represented by an orthotropic 
behaviour along principal strain directions at each Gauss point. Compressive strength increase 
due to lateral confinement and strength reduction caused by crack development were included in 
the masonry model. The bond-slip between steel and concrete was considered as a tension 
stiffening property of the masonry. The comparison between analytical and experimental results 
showed good accuracy in prediction of initial stiffness and ultimate strength for different failure 
modes. The pre- and post-peak predictions for flexural failures were more representative than for 
shear failure where post-peak response under monotonic loading predicted greater degradation of 
strength than observed under post-peak cyclic loading. Mortar joints were not treated as planes 
of weakness in this study owing to the continuous solid columns of grouts in both directions. 
However research on the effect of discontinuous or partially grouted conditions is required. Also, 
the current constitutive relations (from concrete) should be modified for masonry materials.  
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